BERKELEY LOGO 5.5

Berkeley Logo User Manual

Brian Harvey

Chapter 1: Introduction 1

1 Introduction

1.1 Overview

Copyright (© 1993 by the Regents of the University of California

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.

This is a program that is still being written. Many things are missing, including adequate
documentation. This manual assumes that you already know how to program in Logo, and
merely presents the details of this new implementation.

Read Computer_Science_Logo_Style, Volume_1:_ _Symbolic_Computing_ by Brian Har-
vey (MIT Press, 1997) for a tutorial on Logo programming with emphasis on symbolic
computation.

Here are the special features of this dialect of Logo:

Source file compatible among Unix, DOS, Windows, and Mac platforms.
Random-access arrays.

Variable number of inputs to user-defined procedures.

Mutators for list structure (dangerous).

Pause on error, and other improvements to error handling.

Comments and continuation lines; formatting is preserved when
procedure definitions are saved or edited.

Terrapin-style tokenization (e.g., [2+3] is a list with one member)
but LCSI-style syntax (no special forms except TO). The best of
both worlds.

First-class instruction and expression templates (see APPLY).

Macros.

Features not found in Berkeley Logo include robotics, music, GUIs, animation, paral-
lelism, and multimedia. For those, buy a commercial version.

2 BERKELEY LOGO 5.5

1.2 Getter/Setter Variable Syntax

Logo distinguishes PROCEDURES from VARIABLES. A procedure is a set of instruc-
tions to carry out some computation; a variable is a named container that holds a data
value such as a number, word, list, or array.

In traditional Logo syntax, a non-numeric word typed without punctuation represents
a request to invoke the procedure named by that word. A word typed with a preceding
quotation mark represents the word itself. For example, in the instruction

PRINT FIRST "WORD

the procedures named FIRST and PRINT are invoked, but the procedure named WORD
is not invoked; the word W-O-R-D is the input to FIRST.

What about variables? There are two things one can do with a variable: give it a value,
and find out its value. To give a variable a value, Logo provides the primitive procedure
MAKE, which requires two inputs: the name of the variable and the new value to be assigned.
The first input, the name of the variable, is just a word, and if (as is almost always the
case) the programmer wants to assign a value to a specific variable whose name is known
in advance, that input is quoted, just as any known specific word would be:

MAKE "MY.VAR FIRST "WORD

gives the variable named MY.VAR the value W (the first letter of WORD).

To find the value of a variable, Logo provides the primitive procedure THING, which
takes a variable name as its input, and outputs the value of the accessible variable with
that name. Thus

PRINT THING "MY.VAR

will print W (supposing the MAKE above has been done). Since finding the value of a spe-
cific, known variable name is such a common operation, Logo also provides an abbreviated
notation that combines THING with quote:

PRINT :MY.VAR

The colon (which Logo old-timers pronounce "dots") replaces THING and " in the earlier
version of the instruction.

Newcomers to Logo often complain about the need for all this punctuation. In particular,
Logo programmers who learned about dots and quotes without also learning about THING
wonder why an instruction such as

MAKE "NEW.VAR :0LD.VAR

uses two different punctuation marks to identify the two variables. (Having read the
paragraphs above, you will understand that actually both variable names are quoted, but
the procedure THING is invoked to find the value of OLD.VAR, since it’s that value, not
OLD.VAR’s name, that MAKE needs to know. It wouldn’t make sense to ask for THING of
NEW.VAR, since we haven’t given NEW.VAR a value yet.)

Although Logo’s punctuation rules make sense once understood, they do form a barrier to
entry for the Logo beginner. Why, then, couldn’t Logo be designed so that an unpunctuated
word would represent a procedure if there is a procedure by that name, or a variable if there
is a variable by that name? Then we could say

Chapter 1: Introduction 3

PRINT MY.VAR

and Logo would realize that MY.VAR is the name of a variable, not of a procedure. The
traditional reason not to use this convention is that Logo allows the same word to name a
procedure and a variable at the same time. This is most often important for words that
name data types, as in the following procedure:

TO PLURAL :WORD
OUTPUT WORD :WORD "S
END

Here the name WORD is a natural choice for the input to PLURAL, since it describes the
kind of input that PLURAL expects. Within the procedure, we use WORD to represent Logo’s
primitive procedure that combines two input words to form a new, longer word; we use

:WORD to represent the variable containing the input, whatever actual word is given when
PLURAL is invoked.

? PRINT PLURAL "COMPUTER
COMPUTERS

However, if a Logo instruction includes an unquoted word that is not the name of a
procedure, Logo could look for a variable of that name instead. This would allow a "punc-
tuationless" Logo, ¥ PROVIDED THAT USERS WHO WANT TO WORK WITHOUT
COLONS FOR VARIABLES CHOOSE VARIABLE NAMES THAT ARE NOT ALSO
PROCEDURE NAMES. *

What about assigning a value to a variable? Could we do without the quotation mark
on MAKE’s first input? Alas, no. Although the first input to MAKE is usually a constant,
known variable name, sometimes it isn’t, as in this example:

TO INCREMENT :VAR
MAKE :VAR (THING :VAR)+1 ; Note: it’s not "VAR here!
END

MAKE "X 5
INCREMENT "X
PRINT :X

3 N N N

The procedure INCREMENT takes a variable name as its input and changes the value of
that variable. In this example there are two variables; the variable whose name is VAR,
and whose value is the word X; and the variable whose name is X and whose value changes
from 5 to 6. Suppose we changed the behavior of MAKE so that it took the word after MAKE
as the name of the variable to change; we would be unable to write INCREMENT:

TO INCREMENT :VAR ; nonworking!
MAKE VAR (THING VAR)+1
END

This would assign a new value to VAR, not to X.

What we can do is to allow an alternative to MAKE, a "setter" procedure for a particular
variable. The notation will be

? SETFOO 7
? PRINT FOO

4 BERKELEY LOGO 5.5

7

SETFOQ is a "setter procedure" that takes one input (in this case the input 7) and assigns
its value to the variable named FOO.

Berkeley Logo allows users to choose either the traditional notation, in which case the
same name can be used both for a procedure and for a variable, or the getter/setter notation,
in which variable FOO is set with SETFO0 and examined with FOO, but the same name
can’t be used for procedure and variable.

Here is how this choice is allowed: Berkeley Logo uses traditional notation, with pro-
cedures distinct from variables. However, if there is a variable named AllowGetSet whose
value is TRUE (which there is, by default, when Logo starts up), then if a Logo instruction
refers to a nonexistent procedure (so that the error message "I don’t know how to ..." would
result), Logo tries the following two steps:

1. If the name is at least four characters long, and the first three
characters are the letters SET (upper or lower case), and if the name
is followed in the instruction by another value, and if the name
without the SET is the name of a variable that already exists, then
Logo will invoke MAKE with its first input being the name without the
SET, and its second input being the following value.

2. If step 1’s conditions are not met, but the name is
the name of an accessible variable, then Logo will invoke
THING with that name as input, to find the variable’s value.

Step 1 requires that the variable already exist so that misspellings of names of SETxxx
primitives (e.g., SETHEADING) will still be caught, instead of silently creating a new variable.
The command GLOBAL can be used to create a variable without giving it a value.

One final point: The TO command in Logo has always been a special case; the rest of
the line starting with TO is not evaluated as ordinary Logo expressions are. In particular,
the colons used to mark the names of inputs to the procedure do not cause THING to be
invoked. They are merely mnemonic aids, reminding the Logo user that these words are
names of variables. (Arguably, this nonstantard behavior of TO adds to Logo beginners’
confusion about colons.) To a programmer using colonless variable references, the colons
in the TO line are unnecessary and meaningless. Berkeley Logo therefore makes the colons
optional:

TO FOO :IN1 :IN2
and
TO FOO IN1 IN2

are both allowed.

1.3 Entering and Leaving Logo

The process to start Logo depends on your operating system:

‘Unix:’ Type the word logo to the shell. (The directory in which you've installed Logo
must be in your path.)

Chapter 1: Introduction 5

‘DOS:’ Change directories to the one containing Logo (probably C:\UCBLOGO). Then
type UCBLOGO for the large memory version, or BL for the 640K version.

‘Mac:’ Double-click on the LOGO icon within the "UCB Logo" folder.

‘Windows:’

Double-click on the UCBWLOGO icon in the UCBLOGO folder.

To leave Logo, enter the command bye.

After initialization, Logo looks for a file in the current working directory named startup.lg
and, if one is found, executes the Logo instructions in it. Then, under Unix, DOS, or
Windows, if you include one or more filenames on the command line when starting Logo,
those files will be loaded before the interpreter starts reading commands from your terminal.
If you load a file that executes some program that includes a BYE command, Logo will run
that program and exit. You can therefore write standalone programs in Logo and run them
with shell/batch scripts. To support this technique, Logo does not print its usual welcoming
and parting messages if you give file arguments to the logo command.

If you type your interrupt character (see table below) Logo will stop what it’s doing and
return to top-level, as if you did THROW "TOPLEVEL. If you type your quit character Logo
will pause as if you did PAUSE.

Unix DOS/Windows Mac
toplevel usually ctrl-C ctrl-Q command-. (period)
pause usually ctrl-\ ctrl-w command-, (comma)

If you have an environment variable called LOGOLIB whose value is the name of a
directory, then Logo will use that directory instead of the default library. If you invoke
a procedure that has not been defined, Logo first looks for a file in the current directory
named proc.lg where proc is the procedure name in lower case letters. If such a file exists,
Logo loads that file. If the missing procedure is still undefined, or if there is no such file,
Logo then looks in the library directory for a file named proc (no .1g) and, if it exists, loads
it. If neither file contains a definition for the procedure, then Logo signals an error. Several
procedures that are primitive in most versions of Logo are included in the default library,
so if you use a different library you may want to include some or all of the default library
in it.

1.4 Tokenization

Names of procedures, variables, and property lists are case-insensitive. So are the spe-
cial words END, TRUE, and FALSE. Case of letters is preserved in everything you type,
however.

Within square brackets, words are delimited only by spaces and square brackets. [2+3]
is a list containing one word. Note, however, that the Logo primitives that interpret such
a list as a Logo instruction or expression (RUN, IF, etc.) reparse the list as if it had not
been typed inside brackets.

After a quotation mark outside square brackets, a word is delimited by a space, a square
bracket, or a parenthesis.

6 BERKELEY LOGO 5.5

A word not after a quotation mark or inside square brackets is delimited by a space,
a bracket, a parenthesis, or an infix operator +-*/=<>. Note that words following colons
are in this category. Note that quote and colon are not delimiters. Each infix operator
character is a word in itself, except that the two-character sequences <= >= and <> (the
latter meaning not-equal) with no intervening space are recognized as a single word.

A word consisting of a question mark followed by a number (e.g., 737), when runparsed
(i.e., where a procedure name is expected), is treated as if it were the sequence

(737)

making the number an input to the 7 procedure. (See the discussion of templates,
below.) This special treatment does not apply to words read as data, to words with a
non-number following the question mark, or if the question mark is backslashed.

A line (an instruction line or one read by READLIST or READWORD) can be continued
onto the following line if its last character is a tilde (7). READWORD preserves the tilde
and the newline; READLIST does not.

Lines read with READRAWLINE are never continued.

An instruction line or a line read by READLIST (but not by READWORD) is automat-
ically continued to the next line, as if ended with a tilde, if there are unmatched brackets,
parentheses, braces, or vertical bars pending. However, it’s an error if the continuation
line contains only the word END; this is to prevent runaway procedure definitions. Lines
explicitly continued with a tilde avoid this restriction.

If a line being typed interactively on the keyboard is continued, either with a tilde or
automatically, Logo will display a tilde as a prompt character for the continuation line.

A semicolon begins a comment in an instruction line. Logo ignores characters from the
semicolon to the end of the line. A tilde as the last character still indicates a continuation
line, but not a continuation of the comment. For example, typing the instruction

print "abc;comment
def

will print the word abcdef. Semicolon has no special meaning in data lines read by
READWORD or READLIST, but such a line can later be reparsed using RUNPARSE and
then comments will be recognized.

The two-character sequence #! at the beginning of a line also starts a comment. Unix
users can therefore write a file containing Logo commands, starting with the line

#! /usr/local/bin/logo

(or wherever your Logo executable lives) and the file will be executable directly from the
shell.

To include an otherwise delimiting character (including semicolon or tilde) in a word,
precede it with backslash (\). If the last character of a line is a backslash, then the new-
line character following the backslash will be part of the last word on the line, and the
line continues onto the following line. To include a backslash in a word, use \\. If the
combination backslash-newline is entered at the terminal, Logo will issue a backslash as a
prompt character for the continuation line. All of this applies to data lines read with READ-
WORD or READLIST as well as to instruction lines. A character entered with backslash
is EQUALP to the same character without the backslash, but can be distinguished by

Chapter 1: Introduction 7

the BACKSLASHEDP predicate. (However, BACKSLASHEDP recognizes backslashed-
ness only on characters for which it is necessary: whitespace, parentheses, brackets, infix
operators, backslash, vertical bar, tilde, quote, question mark, colon, and semicolon.)

A line read with READRAWLINE has no special quoting mechanism; both backslash
and vertical bar (described below) are just ordinary characters.

An alternative notation to include otherwise delimiting characters in words is to enclose
a group of characters in vertical bars. All characters between vertical bars are treated as
if they were letters. In data read with READWORD the vertical bars are preserved in the
resulting word. In data read with READLIST (or resulting from a PARSE or RUNPARSE
of a word) the vertical bars do not appear explicitly; all potentially delimiting characters
(including spaces, brackets, parentheses, and infix operators) appear as though entered with
a backslash. Within vertical bars, backslash may still be used; the only characters that must
be backslashed in this context are backslash and vertical bar themselves.

Characters entered between vertical bars are forever special, even if the word or list
containing them is later reparsed with PARSE or RUNPARSE. Characters typed after a
backslash are treated somewhat differently: When a quoted word containing a backslashed
character is runparsed, the backslashed character loses its special quality and acts thereafter
as if typed normally. This distinction is important only if you are building a Logo expression
out of parts, to be RUN later, and want to use parentheses. For example,

PRINT RUN (SE "\(2 "+ 3 "\))
will print 5, but
RUN (SE "MAKE nn I(I 2)

will create a variable whose name is open-parenthesis. (Each example would fail if

vertical bars and backslashes were interchanged.)

BERKELEY LOGO 5.5

Chapter 2: Data Structure Primitives 9

2 Data Structure Primitives

2.1 Constructors

word
WORD wordl word2
(WORD wordl word2 word3 ...)

outputs a word formed by concatenating its inputs.

list
LIST thingl thing2
(LIST thingl thing2 thing3 ...)

outputs a list whose members are its inputs, which can be any Logo datum (word, list,
or array).

sentence

SENTENCE thingl thing2

SE thingl thing2

(SENTENCE thingl thing2 thing3 ...)
(SE thingl thing2 thing3 ...)

outputs a list whose members are its inputs, if those inputs are not lists, or the members
of its inputs, if those inputs are lists.

fput

FPUT thing list

outputs a list equal to its second input with one extra member, the first input, at the
beginning. If the second input is a word, then the first input must be a one-letter word,
and FPUT is equivalent to WORD.

Iput

LPUT thing list

outputs a list equal to its second input with one extra member, the first input, at the
end. If the second input is a word, then the first input must be a one-letter word, and
LPUT is equivalent to WORD with its inputs in the other order.

10 BERKELEY LOGO 5.5

array

ARRAY size
(ARRAY size origin)

outputs an array of size members (must be a positive integer), each of which initially
is an empty list. Array members can be selected with ITEM and changed with SETITEM.
The first member of the array is member number 1 unless an origin input (must be an
integer) is given, in which case the first member of the array has that number as its index.
(Typically 0 is used as the origin if anything.) Arrays are printed by PRINT and friends,
and can be typed in, inside curly braces; indicate an origin with {a b <¢}@0.

See [ITEM], page 12 , [SETITEM], page 13 , [PRINT], page 19 .

mdarray

MDARRAY sizelist (library procedure)
(MDARRAY sizelist origin)

outputs a multi-dimensional array. The first input must be a list of one or more posi-
tive integers. The second input, if present, must be a single integer that applies to every
dimension of the array.

Ex: (MDARRAY [3 5] 0) outputs a two-dimensional array whose members range from
[0 0] to [2 4].

listtoarray

LISTTOARRAY list
(LISTTOARRAY list origin)

outputs an array of the same size as the input list, whose members are the members of
the input list.

arraytolist

ARRAYTOLIST array

outputs a list whose members are the members of the input array. The first member of
the output is the first member of the array, regardless of the array’s origin.

combine

COMBINE thingl thing2 (library procedure)

if thing2 is a word, outputs WORD thingl thing2. If thing2 is a list, outputs FPUT
thingl thing?2.
See [WORD], page 9, [FPUT], page 9

reverse

REVERSE list (library procedure)
outputs a list whose members are the members of the input list, in reverse order.

Chapter 2: Data Structure Primitives 11

gensym

GENSYM (library procedure)

outputs a unique word each time it’s invoked. The words are of the form G1, G2, etc.

2.2 Data Selectors

first

FIRST thing

if the input is a word, outputs the first character of the word. If the input is a list,
outputs the first member of the list. If the input is an array, outputs the origin of the array
(that is, the INDEX OF the first member of the array).

firsts

FIRSTS 1list

outputs a list containing the FIRST of each member of the input list. It is an error if
any member of the input list is empty. (The input itself may be empty, in which case the
output is also empty.) This could be written as
to firsts :1list
output map "first :list
end
but is provided as a primitive in order to speed up the iteration tools MAP, MAP.SE, and
FOREACH.

to transpose :matrix

if emptyp first :matrix [op [1]

op fput firsts :matrix transpose bfs :matrix
end

See [MAP], page 77 , [MAPASE], page 77 , [FOREACH], page 77
last

LAST wordorlist

if the input is a word, outputs the last character of the word. If the input is a list,
outputs the last member of the list.

butfirst

BUTFIRST wordorlist
BF wordorlist

if the input is a word, outputs a word containing all but the first character of the input.
If the input is a list, outputs a list containing all but the first member of the input.

12 BERKELEY LOGO 5.5

butfirsts

BUTFIRSTS list
BFS list

outputs a list containing the BUTFIRST of each member of the input list. It is an error
if any member of the input list is empty or an array. (The input itself may be empty, in
which case the output is also empty.) This could be written as

to butfirsts :list
output map "butfirst :list
end

but is provided as a primitive in order to speed up the iteration tools MAP, MAP.SE, and
FOREACH.

See [MAP], page 77 , [MAPdSE]|, page 77 , [FOREACH], page 77

butlast

BUTLAST wordorlist
BL wordorlist

if the input is a word, outputs a word containing all but the last character of the input.
If the input is a list, outputs a list containing all but the last member of the input.

item

ITEM index thing

if the thing is a word, outputs the indexth character of the word. If the thing is a
list, outputs the indexth member of the list. If the thing is an array, outputs the indexth
member of the array. Index starts at 1 for words and lists; the starting index of an array
is specified when the array is created.

mditem

MDITEM indexlist array (library procedure)

outputs the member of the multidimensional array selected by the list of numbers
indexlist.

pick

PICK list (library procedure)

outputs a randomly chosen member of the input list.

remove

REMOVE thing list (library procedure)

outputs a copy of list with every member equal to thing removed.

Chapter 2: Data Structure Primitives 13

remdup

REMDUP list (library procedure)

outputs a copy of 1list with duplicate members removed. If two or more members of
the input are equal, the rightmost of those members is the one that remains in the output.

quoted

QUOTED thing (library procedure)

outputs its input, if a list; outputs its input with a quotation mark prepended, if a word.

2.3 Data Mutators

setitem

SETITEM index array value

command. Replaces the indexth member of array with the new value. Ensures that
the resulting array is not circular, i.e., value may not be a list or array that contains array.

mdsetitem

MDSETITEM indexlist array value (library procedure)

command. Replaces the member of array chosen by indexlist with the new value.

.setfirst

.SETFIRST list value
command. Changes the first member of 1ist to be value.

WARNING: Primitives whose names start with a period are DANGEROUS. Their use by
non-experts is not recommended. The use of .SETFIRST can lead to circular list structures,
which will get some Logo primitives into infinite loops; unexpected changes to other data
structures that share storage with the list being modified; and the loss of memory if a
circular structure is released.

.setbf

.SETBF 1list value
command. Changes the butfirst of 1ist to be value.

WARNING: Primitives whose names start with a period are DANGEROUS. Their use
by non-experts is not recommended. The use of .SETBF can lead to circular list structures,
which will get some Logo primitives into infinite loops; unexpected changes to other data
structures that share storage with the list being modified; Logo crashes and coredumps if
the butfirst of a list is not itself a list; and the loss of memory if a circular structure is
released.

14 BERKELEY LOGO 5.5

.setitem

.SETITEM index array value

command. Changes the indexth member of array to be value, like SETITEM, but
without checking for circularity.

WARNING: Primitives whose names start with a period are DANGEROUS. Their use
by non-experts is not recommended. The use of .SETITEM can lead to circular arrays,
which will get some Logo primitives into infinite loops; and the loss of memory if a circular
structure is released.

See [SETITEM], page 13.
push

PUSH stackname thing (library procedure)

command. Adds the thing to the stack that is the value of the variable whose name
is stackname. This variable must have a list as its value; the initial value should be the
empty list. New members are added at the front of the list.

pop

POP stackname (library procedure)

outputs the most recently PUSHed member of the stack that is the value of the variable
whose name is stackname and removes that member from the stack.

queue

QUEUE queuename thing (library procedure)

command. Adds the thing to the queue that is the value of the variable whose name
is queuename. This variable must have a list as its value; the initial value should be the
empty list. New members are added at the back of the list.

dequeue

DEQUEUE queuename (library procedure)

outputs the least recently QUEUEd member of the queue that is the value of the variable
whose name is queuename and removes that member from the queue.

2.4 Predicates

wordp

WORDP thing
WORD? thing

outputs TRUE if the input is a word, FALSE otherwise.

Chapter 2: Data Structure Primitives 15

listp

LISTP thing
LIST? thing

outputs TRUE if the input is a list, FALSE otherwise.

arrayp

ARRAYP thing
ARRAY? thing

outputs TRUE if the input is an array, FALSE otherwise.

emptyp

EMPTYP thing
EMPTY? thing

outputs TRUE if the input is the empty word or the empty list, FALSE otherwise.
equalp

EQUALP thingl thing?2
EQUAL? thingl thing2
thingl = thing2
outputs TRUE if the inputs are equal, FALSE otherwise. Two numbers are equal if
they have the same numeric value. Two non-numeric words are equal if they contain the
same characters in the same order. If there is a variable named CASEIGNOREDP whose
value is TRUE, then an upper case letter is considered the same as the corresponding lower
case letter. (This is the case by default.) Two lists are equal if their members are equal.
An array is only equal to itself; two separately created arrays are never equal even if their
members are equal. (It is important to be able to know if two expressions have the same
array as their value because arrays are mutable; if, for example, two variables have the same
array as their values then performing SETITEM on one of them will also change the other.)

See [CASEIGNOREDP], page 89 , [SETITEM], page 13

notequalp

NOTEQUALP thingl thing2
NOTEQUAL? thingl thing2
thingl <> thing?2
outputs FALSE if the inputs are equal, TRUE otherwise. See EQUALP for the meaning
of equality for different data types.

beforep

BEFOREP wordl word2

16 BERKELEY LOGO 5.5

BEFORE? wordl word2

outputs TRUE if wordl comes before word2 in ASCII collating sequence (for words
of letters, in alphabetical order). Case-sensitivity is determined by the value of CA-
SEIGNOREDP. Note that if the inputs are numbers, the result may not be the same as
with LESSP; for example, BEFOREP 3 12 is false because 3 collates after 1.

See [CASEIGNOREDP], page 89 , [LESSP], page 32

.eq

.EQ thingl thing2

outputs TRUE if its two inputs are the same datum, so that applying a mutator to one
will change the other as well. Outputs FALSE otherwise, even if the inputs are equal in
value.

WARNING: Primitives whose names start with a period are DANGEROUS. Their use by
non-experts is not recommended. The use of mutators can lead to circular data structures,
infinite loops, or Logo crashes.

memberp

MEMBERP thingl thing2
MEMBER? thingl thing2

if thing?2 is a list or an array, outputs TRUE if thingl is EQUALP to a member of
thing2, FALSE otherwise. If thing?2 is a word, outputs TRUE if thingl is a one-character
word EQUALP to a character of thing2, FALSE otherwise.

See [EQUALP], page 15 .

substringp

SUBSTRINGP thingl thing2
SUBSTRING? thingl thing2

if thingl or thing?2 is a list or an array, outputs FALSE. If thing?2 is a word, outputs
TRUE if thingl is EQUALP to a substring of thing2, FALSE otherwise.

See [EQUALP], page 15 .
numberp

NUMBERP thing
NUMBER? thing

outputs TRUE if the input is a number, FALSE otherwise.

backslashedp

BACKSLASHEDP char
BACKSLASHED? char

Chapter 2: Data Structure Primitives 17

outputs TRUE if the input character was originally entered into Logo with a backslash
(\) before it or within vertical bars (|) to prevent its usual special syntactic meaning, FALSE
otherwise. (Outputs TRUE only if the character is a backslashed space, tab, newline, or
one of () [1+-*/=<>":;\"7|)

2.5 Queries

count

COUNT thing

outputs the number of characters in the input, if the input is a word; outputs the number
of members in the input, if it is a list or an array. (For an array, this may or may not be
the index of the last member, depending on the array’s origin.)

ascii

ASCII char

outputs the integer (between 0 and 255) that represents the input character in the ASCII
code. Interprets control characters as representing backslashed punctuation, and returns the
character code for the corresponding punctuation character without backslash. (Compare
RAWASCILI.)

rawascii

RAWASCII char

outputs the integer (between 0 and 255) that represents the input character in the ASCII
code. Interprets control characters as representing themselves. To find out the ASCII code
of an arbitrary keystroke, use RAWASCII RC.

char

CHAR int

outputs the character represented in the ASCII code by the input, which must be an
integer between 0 and 255.

See [ASCII], page 17 .
member

MEMBER thingl thing?2
if thing2 is a word or list and if MEMBERP with these inputs would output TRUE,
outputs the portion of thing2 from the first instance of thingl to the end. If MEMBERP
would output FALSE, outputs the empty word or list according to the type of thing2. It
is an error for thing2 to be an array.

See [MEMBERP], page 16 .

18 BERKELEY LOGO 5.5

lowercase

LOWERCASE word

outputs a copy of the input word, but with all uppercase letters changed to the corre-
sponding lowercase letter.

uppercase

UPPERCASE word

outputs a copy of the input word, but with all lowercase letters changed to the corre-
sponding uppercase letter.

standout

STANDOUT thing

outputs a word that, when printed, will appear like the input but displayed in standout
mode (boldface, reverse video, or whatever your terminal does for standout). The word
contains terminal-specific magic characters at the beginning and end; in between is the
printed form (as if displayed using TYPE) of the input. The output is always a word, even
if the input is of some other type, but it may include spaces and other formatting characters.
Note: a word output by STANDOUT while Logo is running on one terminal will probably
not have the desired effect if printed on another type of terminal.

On the Macintosh, the way that standout works is incompatible with the use of char-
acters whose ASCII code is greater than 127. Therefore, you have a choice to make: The
instruction

CANINVERSE O
disables standout, but enables the display of ASCII codes above 127, and the instruction
CANINVERSE 1

restores the default situation in which standout is enabled and the extra graphic char-
acters cannot be printed.

parse

PARSE word

outputs the list that would result if the input word were entered in response to a READ-
LIST operation. That is, PARSE READWORD has the same value as READLIST for the same
characters read.

See [READLIST], page 20 , [READWORD)], page 20
runparse

RUNPARSE wordorlist

outputs the list that would result if the input word or list were entered as an instruction
line; characters such as infix operators and parentheses are separate members of the output.
Note that sublists of a runparsed list are not themselves runparsed.

Chapter 3: Communication 19

3 Communication

3.1 Transmitters

Note: If there is a variable named PRINTDEPTHLIMIT with a nonnegative integer
value, then complex list and array structures will be printed only to the allowed depth.
That is, members of members of... of members will be allowed only so far. The members
omitted because they are just past the depth limit are indicated by an ellipsis for each one,
so a too-deep list of two members will print as [... ...].

If there is a variable named PRINTWIDTHLIMIT with a nonnegative integer value,
then only the first so many members of any array or list will be printed. A single ellipsis
replaces all missing data within the structure. The width limit also applies to the number of
characters printed in a word, except that a PRINTWIDTHLIMIT between 0 and 9 will be
treated as if it were 10 when applied to words. This limit applies not only to the top-level
printed datum but to any substructures within it.

See [PRINTDEPTHLIMIT], page 90 , [PRINTWIDTHLIMIT], page 90

If there is a variable named FULLPRINTP whose value is TRUE, then words that were
created using backslash or vertical bar (to include characters that would otherwise not be
treated as part of a word) are printed with the backslashes or vertical bars shown, so that
the printed result could be re-read by Logo to produce the same value. If FULLPRINTP
is TRUE then the empty word (however it was created) prints as | |. (Otherwise it prints
as nothing at all.)

See [FULLPRINTP], page 89 .
print

PRINT thing
PR thing

(PRINT thingl thing2 ...)
(PR thingl thing2 ...)

command. Prints the input or inputs to the current write stream (initially the terminal).
All the inputs are printed on a single line, separated by spaces, ending with a newline. If an
input is a list, square brackets are not printed around it, but brackets are printed around
sublists. Braces are always printed around arrays.

type

TYPE thing
(TYPE thingl thing2 ...)

command. Prints the input or inputs like PRINT, except that no newline character is
printed at the end and multiple inputs are not separated by spaces. Note: printing to the
terminal is ordinarily "line buffered"; that is, the characters you print using TYPE will
not actually appear on the screen until either a newline character is printed (for example,
by PRINT or SHOW) or Logo tries to read from the keyboard (either at the request of

20 BERKELEY LOGO 5.5

your program or after an instruction prompt). This buffering makes the program much
faster than it would be if each character appeared immediately, and in most cases the
effect is not disconcerting. To accommodate programs that do a lot of positioned text
display using TYPE, Logo will force printing whenever SETCURSOR is invoked. This
solves most buffering problems. Still, on occasion you may find it necessary to force the
buffered characters to be printed explicitly; this can be done using the WAIT command.
WAIT 0 will force printing without actually waiting.

See [SETCURSOR/, page 26 , [WAIT], page 71
show

SHOW thing
(SHOW thingl thing2 ...)

command. Prints the input or inputs like PRINT, except that if an input is a list it is
printed inside square brackets.

See [PRINT], page 19 .

3.2 Receivers

readlist

READLIST
RL

reads a line from the read stream (initially the terminal) and outputs that line as a
list. The line is separated into members as though it were typed in square brackets in an
instruction. If the read stream is a file, and the end of file is reached, READLIST outputs
the empty word (not the empty list). READLIST processes backslash, vertical bar, and
tilde characters in the read stream; the output list will not contain these characters but
they will have had their usual effect. READLIST does not, however, treat semicolon as a
comment character.

readword

READWORD
Rw

reads a line from the read stream and outputs that line as a word. The output is a single
word even if the line contains spaces, brackets, etc. If the read stream is a file, and the end of
file is reached, READWORD outputs the empty list (not the empty word). READWORD
processes backslash, vertical bar, and tilde characters in the read stream. In the case of a
tilde used for line continuation, the output word DOES include the tilde and the newline
characters, so that the user program can tell exactly what the user entered. Vertical bars
in the line are also preserved in the output. Backslash characters are not preserved in
the output, but the character following the backslash has 128 added to its representation.
Programs can use BACKSLASHEDP to check for this code. (Backslashedness is preserved
only for certain characters.)

Chapter 3: Communication 21

See [BACKSLASHEDP], page 16 .
readrawline

READRAWLINE

reads a line from the read stream and outputs that line as a word. The output is a
single word even if the line contains spaces, brackets, etc. If the read stream is a file, and
the end of file is reached, READRAWLINE outputs the empty list (not the empty word).
READRAWLINE outputs the exact string of characters as they appear in the line, with no
special meaning for backslash, vertical bar, tilde, or any other formatting characters.

See [READWORD)], page 20 .
readchar

READCHAR
RC

reads a single character from the read stream and outputs that character as a word. If
the read stream is a file, and the end of file is reached, READCHAR outputs the empty
list (not the empty word). If the read stream is a terminal, echoing is turned off when
READCHAR is invoked, and remains off until READLIST or READWORD is invoked or
a Logo prompt is printed. Backslash, vertical bar, and tilde characters have no special
meaning in this context.

See [READLIST], page 20 .
readchars

READCHARS num
RCS num

reads num characters from the read stream and outputs those characters as a word. If
the read stream is a file, and the end of file is reached, READCHARS outputs the empty
list (not the empty word). If the read stream is a terminal, echoing is turned off when
READCHARS is invoked, and remains off until READLIST or READWORD is invoked
or a Logo prompt is printed. Backslash, vertical bar, and tilde characters have no special
meaning in this context.

See [READLIST], page 20 , [READWORD)], page 20
shell

SHELL command
(SHELL command wordflag)

Under Unix, outputs the result of running command as a shell command. (The command
is sent to ‘/bin/sh’, not ‘csh’ or other alternatives.) If the command is a literal list in the
instruction line, and if you want a backslash character sent to the shell, you must use \\ to
get the backslash through Logo’s reader intact. The output is a list containing one member
for each line generated by the shell command. Ordinarily each such line is represented by

22 BERKELEY LOGO 5.5

a list in the output, as though the line were read using READLIST. If a second input is
given, regardless of the value of the input, each line is represented by a word in the output
as though it were read with READWORD. Example:

to dayofweek
output first first shell [date]
end

This is "first first" to extract the first word of the first (and only) line of the shell output.

Under DOS, SHELL is a command, not an operation; it sends its input to a DOS
command processor but does not collect the result of the command.

The Macintosh, of course, is not programmable (unless you are running the Unix version
of UCBLogo under OS X).

3.3 File Access

setprefix

SETPREFIX string

command. Sets a prefix that will be used as the implicit beginning of filenames in
OPENREAD, OPENWRITE, OPENAPPEND, OPENUPDATE, LOAD, and SAVE com-
mands. Logo will put the appropriate separator character (slash for Unix, backslash for
DOS/Windows, colon for MacOS) between the prefix and the filename entered by the user.
The input to SETPREFIX must be a word, unless it is the empty list, to indicate that there
should be no prefix.

See [OPENREAD], page 22 , See [OPENWRITE], page 22 , See [OPENAPPEND)],
page 23 , See [OPENUPDATE], page 23 , See [LOAD], page 63 , See [SAVE], page 63 .

prefix

PREFIX
outputs the current file prefix, or [] if there is no prefix.
See [SETPREFIX], page 22 .

openread

OPENREAD filename

command. Opens the named file for reading. The read position is initially at the
beginning of the file.

openwrite

OPENWRITE filename

command. Opens the named file for writing. If the file already existed, the old version
is deleted and a new, empty file created.

Chapter 3: Communication 23

OPENWRITE, but not the other OPEN variants, will accept as input a two-element
list, in which the first element must be a variable name, and the second must be a positive
integer. A character buffer of the specified size will be created. When a SETWRITE is
done with this same list (in the sense of .EQ, not a copy, so you must do something like

? make "buf [foo 100]
? openwrite :buf
? setwrite :buf

[...]

? close :buf
and not just

7 openwrite [foo 100]
7 setwrite [foo 100]

and so on), the printed characters are stored in the buffer; when a CLOSE is done with
the same list as input, the characters from the buffer (treated as one long word, even if
spaces and newlines are included) become the value of the specified variable.

openappend

OPENAPPEND filename

command. Opens the named file for writing. If the file already exists, the write position
is initially set to the end of the old file, so that newly written data will be appended to it.

openupdate

OPENUPDATE filename

command. Opens the named file for reading and writing. The read and write position
is initially set to the end of the old file, if any. Note: each open file has only one position,
for both reading and writing. If a file opened for update is both READER and WRITER
at the same time, then SETREADPOS will also affect WRITEPOS and vice versa. Also, if
you alternate reading and writing the same file, you must SETREADPOS between a write
and a read, and SETWRITEPOS between a read and a write.

See [READER], page 25 , [WRITER], page 25 , [SETREADPOS], page 25 , [SET-
WRITEPOS], page 25

close

CLOSE filename

command. Closes the named file. If the file was currently the reader or writer, then the
reader or writer is changed to the keyboard or screen, as if SETREAD [] or SETWRITE []
had been done.

allopen

ALLOPEN

outputs a list whose members are the names of all files currently open. This list does
not include the dribble file, if any.

24 BERKELEY LOGO 5.5

closeall

CLOSEALL (library procedure)
command. Closes all open files. Abbreviates FOREACH ALLOPEN [CLOSE 7]
See [FOREACH], page 77 , [CLOSE], page 23

erasefile

ERASEFILE filename
ERF filename

command. Erases (deletes, removes) the named file, which should not currently be open.

dribble

DRIBBLE filename

command. Creates a new file whose name is the input, like OPENWRITE, and begins
recording in that file everything that is read from the keyboard or written to the terminal.
That is, this writing is in addition to the writing to WRITER. The intent is to create a
transcript of a Logo session, including things like prompt characters and interactions.

See [OPENWRITE], page 22 , [WRITER], page 25
nodribble

NODRIBBLE

command. Stops copying information into the dribble file, and closes the file.
setread

SETREAD filename
command. Makes the named file the read stream, used for READLIST, etc. The file
must already be open with OPENREAD or OPENUPDATE. If the input is the empty list,
then the read stream becomes the terminal, as usual. Changing the read stream does not
close the file that was previously the read stream, so it is possible to alternate between files.

See [READLIST], page 20 , [OPENREAD], page 22 , [OPENUPDATE], page 23
setwrite

SETWRITE filename

command. Makes the named file the write stream, used for PRINT, etc. The file must
already be open with OPENWRITE, OPENAPPEND, or OPENUPDATE. If the input is
the empty list, then the write stream becomes the terminal, as usual. Changing the write
stream does not close the file that was previously the write stream, so it is possible to
alternate between files.

If the input is a list, then its first element must be a variable name, and its second and
last element must be a positive integer; a buffer of that many characters will be allocated,

Chapter 3: Communication 25

and will become the writestream. If the same list (same in the .EQ sense, not a copy) has
been used as input to OPENWRITE, then the already-allocated buffer will be used, and
the writer can be changed to and from this buffer, with all the characters accumulated as
in a file. When the same list is used as input to CLOSE, the contents of the buffer (as an
unparsed word, which may contain newline characters) will become the value of the named
variable. For compatibility with earlier versions, if the list has not been opened when the
SETWRITE is done, it will be opened implicitly, but the first SETWRITE after this one
will implicitly close it, setting the variable and freeing the allocated buffer.

See [PRINT], page 19 , [OPENWRITE]|, page 22 ; [OPENAPPEND], page 23 ;
[OPENUPDATE], page 23

reader

READER

outputs the name of the current read stream file, or the empty list if the read stream is
the terminal.

writer

WRITER

outputs the name of the current write stream file, or the empty list if the write stream
is the terminal.

setreadpos

SETREADPOS charpos

command. Sets the file pointer of the read stream file so that the next READLIST,
etc., will begin reading at the charposth character in the file, counting from 0. (That is,
SETREADPOS 0 will start reading from the beginning of the file.) Meaningless if the read
stream is the terminal.

See [READLIST], page 20 .
setwritepos

SETWRITEPOS charpos

command. Sets the file pointer of the write stream file so that the next PRINT, etc.,
will begin writing at the charposth character in the file, counting from 0. (That is,
SETWRITEPOS O will start writing from the beginning of the file.) Meaningless if the write
stream is the terminal.

See [PRINT], page 19 .
readpos

READPOS

outputs the file position of the current read stream file.

26 BERKELEY LOGO 5.5

writepos

WRITEPOS

outputs the file position of the current write stream file.
eofp

EOFP
EQOF?

predicate, outputs TRUE if there are no more characters to be read in the read stream
file, FALSE otherwise.

filep

FILEP filename
FILE? filename (library procedure)

predicate, outputs TRUE if a file of the specified name exists and can be read, FALSE
otherwise.

3.4 Terminal Access

keyp

KEYP
KEY?

predicate, outputs TRUE if there are characters waiting to be read from the read stream.
If the read stream is a file, this is equivalent to NOT EOFP. If the read stream is the terminal,
then echoing is turned off and the terminal is set to CBREAK (character at a time instead
of line at a time) mode. It remains in this mode until some line-mode reading is requested
(e.g., READLIST). The Unix operating system forgets about any pending characters when
it switches modes, so the first KEYP invocation will always output FALSE.

See [EOFP], page 26 , [READLIST], page 20
cleartext

CLEARTEXT
CT

command. Clears the text screen of the terminal.
setcursor

SETCURSOR vector

command. The input is a list of two numbers, the x and y coordinates of a screen
position (origin in the upper left corner, positive direction is southeast). The screen cursor

Chapter 3: Communication 27

is moved to the requested position. This command also forces the immediate printing of
any buffered characters.

cursor

CURSOR

outputs a list containing the current x and y coordinates of the screen cursor. Logo may
get confused about the current cursor position if, e.g., you type in a long line that wraps
around or your program prints escape codes that affect the terminal strangely.

setmargins

SETMARGINS vector

command. The input must be a list of two numbers, as for SETCURSOR. The effect
is to clear the screen and then arrange for all further printing to be shifted down and to
the right according to the indicated margins. Specifically, every time a newline character is
printed (explicitly or implicitly) Logo will type x_margin spaces, and on every invocation
of SETCURSOR the margins will be added to the input x and y coordinates. (CURSOR
will report the cursor position relative to the margins, so that this shift will be invisible to
Logo programs.) The purpose of this command is to accommodate the display of terminal
screens in lecture halls with inadequate TV monitors that miss the top and left edges of
the screen.

See [SETCURSOR/, page 26 .
settextcolor

SETTEXTCOLOR foreground background
SETTC foreground background

Command (Windows and DOS extended only). The inputs are color numbers, as for
turtle graphics. Future printing to the text window will use the specified colors for fore-
ground (the characters printed) and background (the space under those characters). Using
STANDOUT will revert to the default text window colors. In the DOS extended (ucbl-
ogo.exe) version, colors in textscreen mode are limited to numbers 0-7, and the coloring
applies only to text printed by the program, not to the echoing of text typed by the user.
Neither limitation applies to the text portion of splitscreen mode, which is actually drawn
as graphics internally.

See [STANDOUT], page 18 .

28

BERKELEY LOGO 5.5

Chapter 4: Arithmetic 29

4 Arithmetic
4.1 Numeric Operations

sum

SUM numl num?2
(SUM numl num2 num3 ...)
numl + num2

outputs the sum of its inputs.

difference

DIFFERENCE numl num?2
numl - num2

outputs the difference of its inputs. Minus sign means infix difference in ambiguous
contexts (when preceded by a complete expression), unless it is preceded by a space and
followed by a nonspace. (See also MINUS.)

minus

MINUS num
- num
outputs the negative of its input. Minus sign means unary minus if the previous token
is an infix operator or open parenthesis, or it is preceded by a space and followed by a
nonspace. There is a difference in binding strength between the two forms:

MINUS 3 + 4 means - (3+4)
-3+4 means (-3)+4
product

PRODUCT numl num2
(PRODUCT numl num2 num3 ...)
numl * num2

outputs the product of its inputs.

quotient

QUOTIENT numl num2
(QUOTIENT num)
numl / num?2
outputs the quotient of its inputs. The quotient of two integers is an integer if and only
if the dividend is a multiple of the divisor. (In other words, QUOTIENT 5 2 is 2.5, not 2, but
QUOTIENT 4 2 is 2, not 2.0 — it does the right thing.) With a single input, QUOTIENT
outputs the reciprocal of the input.

30 BERKELEY LOGO 5.5

remainder

REMAINDER numl num?2

outputs the remainder on dividing num1 by num2; both must be integers and the result
is an integer with the same sign as numl.

modulo

MODULO numl num?2

outputs the remainder on dividing numl by num2; both must be integers and the result
is an integer with the same sign as numa2.

int

INT num

outputs its input with fractional part removed, i.e., an integer with the same sign as the
input, whose absolute value is the largest integer less than or equal to the absolute value of
the input.

round

ROUND num

outputs the nearest integer to the input.
sqrt

SQRT num

outputs the square root of the input, which must be nonnegative.

power

POWER numl num2

outputs numi to the num2 power. If numl is negative, then num2 must be an integer.

exp

EXP num
outputs e (2.718281828+) to the input power.

log10

LOG10 num

outputs the common logarithm of the input.

Chapter 4: Arithmetic 31

In

LN num

outputs the natural logarithm of the input.
sin

SIN degrees

outputs the sine of its input, which is taken in degrees.

radsin

RADSIN radians

outputs the sine of its input, which is taken in radians.

COS

COS degrees

outputs the cosine of its input, which is taken in degrees.

radcos

RADCOS radians

outputs the cosine of its input, which is taken in radians.

arctan

ARCTAN num
(ARCTAN x y)

outputs the arctangent, in degrees, of its input. With two inputs, outputs the arctangent
of y/x, if x is nonzero, or 90 or —90 depending on the sign of y, if x is zero.

radarctan

RADARCTAN num
(RADARCTAN x y)

outputs the arctangent, in radians, of its input. With two inputs, outputs the arctangent
of y/x, if x is nonzero, or pi/2 or —pi/2 depending on the sign of y, if x is zero.

The expression 2% (RADARCTAN 0 1) can be used to get the value of pi.
iseq

ISEQ from to (library procedure)
outputs a list of the integers from FROM to TO, inclusive.

32 BERKELEY LOGO 5.5

? show iseq 3 7
[34567]
? show iseq 7 3
[7 6 54 3]

rseq

RSEQ from to count (library procedure)

outputs a list of COUNT equally spaced rational numbers between FROM and TO,
inclusive.

? show rseq 3 5 9

[3 3.25 3.5 3.75 4 4.25 4.5 4.75 5]
? show rseq 3 5 5

[3 3.5 4 4.5 5]

4.2 Numeric Predicates

lessp

LESSP numl num2
LESS? numl num2
numl < num?2

outputs TRUE if its first input is strictly less than its second.
greaterp

GREATERP numl num?2
GREATER? numl num2
numl > num?2

outputs TRUE if its first input is strictly greater than its second.
lessequalp

LESSEQUALP numl num?2
LESSEQUAL? numl num?2
numl <= num?2

outputs TRUE if its first input is less than or equal to its second.
greaterequalp

GREATEREQUALP numl num2
GREATEREQUAL? numl num2
numl >= num?2

outputs TRUE if its first input is greater than or equal to its second.

Chapter 4: Arithmetic 33

4.3 Random Numbers

random

RANDOM num
(RANDOM start end)

with one input, outputs a random nonnegative integer less than its input, which must
be a positive integer.

With two inputs, RANDOM outputs a random integer greater than or equal to the first
input, and less than or equal to the second input. Both inputs must be integers, and the first
must be less than the second. (RANDOM O 9) is equivalent to RANDOM 10; (RANDOM 3 8) is
equivalent to (RANDOM 6)+3.

rerandom

RERANDOM
(RERANDOM seed)

command. Makes the results of RANDOM reproducible. Ordinarily the sequence of
random numbers is different each time Logo is used. If you need the same sequence of
pseudo-random numbers repeatedly, e.g. to debug a program, say RERANDOM before the
first invocation of RANDOM. If you need more than one repeatable sequence, you can give
RERANDOM an integer input; each possible input selects a unique sequence of numbers.

4.4 Print Formatting

form

FORM num width precision

outputs a word containing a printable representation of num, possibly preceded by spaces
(and therefore not a number for purposes of performing arithmetic operations), with at least
width characters, including exactly precision digits after the decimal point. (If precision
is 0 then there will be no decimal point in the output.)

As a debugging feature, (FORM num -1 format) will print the floating point num accord-
ing to the C printf format, to allow

to hex :num
op form :num -1 "|%08X %08X]|
end

to allow finding out the exact result of floating point operations. The precise format
needed may be machine-dependent.

34 BERKELEY LOGO 5.5

4.5 Bitwise Operations

bitand

BITAND numl num2
(BITAND numl num2 num3 ...)

outputs the bitwise AND of its inputs, which must be integers.
See [AND], page 35 .

bitor

BITOR numl num2
(BITOR numl num2 num3 ...)

outputs the bitwise OR of its inputs, which must be integers.
See [OR], page 35 .

bitxor

BITXOR numl num2
(BITXOR numl num2 num3 ...)

outputs the bitwise EXCLUSIVE OR of its inputs, which must be integers.
See [OR], page 35 .

bitnot

BITNOT num
outputs the bitwise NOT of its input, which must be an integer.
See [NOT], page 35 .

ashift

ASHIFT numl num2

outputs numl arithmetic-shifted to the left by num2 bits. If num2 is negative, the shift
is to the right with sign extension. The inputs must be integers.

Ishift

LSHIFT numl num?2

outputs numl logical-shifted to the left by num2 bits. If num2 is negative, the shift is to
the right with zero fill. The inputs must be integers.

Chapter 5: Logical Operations 35

5 Logical Operations

and

AND tf1l tf2
(AND tf1l tf2 t£f3 ...)
outputs TRUE if all inputs are TRUE, otherwise FALSE. All inputs must be TRUE
or FALSE. (Comparison is case-insensitive regardless of the value of CASEIGNOREDP.
That is, true or True or TRUE are all the same.) An input can be a list, in which case it
is taken as an expression to run; that expression must produce a TRUE or FALSE value.
List expressions are evaluated from left to right; as soon as a FALSE value is found, the
remaining inputs are not examined. Example:
MAKE "RESULT AND [NOT (:X = 0)] [(1 / :X) > .5]
to avoid the division by zero if the first part is false.
See [CASEIGNOREDP], page 89 .

or

OR tf1 tf2
(OR tfl tf2 tf3 ...)

outputs TRUE if any input is TRUE, otherwise FALSE. All inputs must be TRUE or
FALSE. (Comparison is case-insensitive regardless of the value of CASEIGNOREDP. That
is, true or True or TRUE are all the same.) An input can be a list, in which case it is
taken as an expression to run; that expression must produce a TRUE or FALSE value.
List expressions are evaluated from left to right; as soon as a TRUE value is found, the
remaining inputs are not examined. Example:

IF OR :X=0 [some.long.computation] [...]
to avoid the long computation if the first condition is met.

See [CASEIGNOREDP], page 89 .
not

NOT tf

outputs TRUE if the input is FALSE, and vice versa. The input can be a list, in which
case it is taken as an expression to run; that expression must produce a TRUE or FALSE
value.

36

BERKELEY LOGO 5.5

Chapter 6: Graphics 37

6 Graphics

Berkeley Logo provides traditional Logo turtle graphics with one turtle. Multiple tur-
tles, dynamic turtles, and collision detection are not supported. This is the most hardware-
dependent part of Logo; some features may exist on some machines but not others. Nev-
ertheless, the goal has been to make Logo programs as portable as possible, rather than
to take fullest advantage of the capabilities of each machine. In particular, Logo attempts
to scale the screen so that turtle coordinates [-100 —100] and [100 100] fit on the graphics
window, and so that the aspect ratio is 1:1.

The center of the graphics window (which may or may not be the entire screen, depending
on the machine used) is turtle location [0 0]. Positive X is to the right; positive Y is up.
Headings (angles) are measured in degrees clockwise from the positive Y axis. (This differs
from the common mathematical convention of measuring angles counterclockwise from the
positive X axis.) The turtle is represented as an isoceles triangle; the actual turtle position
is at the midpoint of the base (the short side). However, the turtle is drawn one step behind
its actual position, so that the display of the base of the turtle’s triangle does not obscure
a line drawn perpendicular to it (as would happen after drawing a square).

Colors are, of course, hardware-dependent. However, Logo provides partial hardware
independence by interpreting color numbers 0 through 7 uniformly on all computers:

0 black 1 Dblue 2 green 3 cyan
4 red 5 magenta 6 yellow 7 white

Where possible, Logo provides additional user-settable colors; how many are available
depends on the hardware and operating system environment. If at least 16 colors are
available, Logo tries to provide uniform initial settings for the colors 8-15:

8 brown 9 tan 10 forest 11 aqua
12 salmon 13 purple 14 orange 15 grey

Logo begins with a black background and white pen.

6.1 Turtle Motion

forward

FORWARD dist
FD dist

moves the turtle forward, in the direction that it’s facing, by the specified distance
(measured in turtle steps).

back

BACK dist
BK dist

moves the turtle backward, i.e., exactly opposite to the direction that it’s facing, by the
specified distance. (The heading of the turtle does not change.)

38 BERKELEY LOGO 5.5

left

LEFT degrees
LT degrees

turns the turtle counterclockwise by the specified angle, measured in degrees (1/360 of
a circle).

right

RIGHT degrees
RT degrees

turns the turtle clockwise by the specified angle, measured in degrees (1/360 of a circle).

setpos

SETPOS pos

moves the turtle to an absolute screen position. The input is a list of two numbers, the
X and Y coordinates.

setxy

SETXY xcor ycor

moves the turtle to an absolute screen position. The two inputs are numbers, the X and
Y coordinates.

setx

SETX xcor

moves the turtle horizontally from its old position to a new absolute horizontal coordi-
nate. The input is the new X coordinate.

sety

SETY ycor

moves the turtle vertically from its old position to a new absolute vertical coordinate.
The input is the new Y coordinate.

setheading

SETHEADING degrees
SETH degrees

turns the turtle to a new absolute heading. The input is a number, the heading in
degrees clockwise from the positive Y axis.

Chapter 6: Graphics 39

home

HOME
moves the turtle to the center of the screen. Equivalent to SETPOS [0 0] SETHEADING O.
See [SETPOS], page 38 , See [SETHEADING], page 38 .

arc

ARC angle radius

draws an arc of a circle, with the turtle at the center, with the specified radius, starting
at the turtle’s heading and extending clockwise through the specified angle. The turtle does
not move.

6.2 Turtle Motion Queries

pos

POS

outputs the turtle’s current position, as a list of two numbers, the X and Y coordinates.

xXcor

XCOR (library procedure)

outputs a number, the turtle’s X coordinate.

ycor

YCOR (library procedure)

outputs a number, the turtle’s Y coordinate.

heading

HEADING

outputs a number, the turtle’s heading in degrees.

towards

TOWARDS pos

outputs a number, the heading at which the turtle should be facing so that it would
point from its current position to the position given as the input.

40 BERKELEY LOGO 5.5

scrunch

SCRUNCH

outputs a list containing two numbers, the X and Y scrunch factors, as used by SET-
SCRUNCH. (But note that SETSCRUNCH takes two numbers as inputs, not one list of
numbers.)

See [SETSCRUNCH], page 42 .

6.3 Turtle and Window Control

showturtle

SHOWTURTLE
ST

makes the turtle visible.

hideturtle

HIDETURTLE
HT

makes the turtle invisible. It’s a good idea to do this while you’re in the middle of a
complicated drawing, because hiding the turtle speeds up the drawing substantially.

clean

CLEAN

erases all lines that the turtle has drawn on the graphics window. The turtle’s state
(position, heading, pen mode, etc.) is not changed.

clearscreen

CLEARSCREEN
CS

erases the graphics window and sends the turtle to its initial position and heading. Like
HOME and CLEAN together.

See [HOME], page 39 .
wrap

WRAP

tells the turtle to enter wrap mode: From now on, if the turtle is asked to move past
the boundary of the graphics window, it will "wrap around" and reappear at the opposite
edge of the window. The top edge wraps to the bottom edge, while the left edge wraps to

Chapter 6: Graphics 41

the right edge. (So the window is topologically equivalent to a torus.) This is the turtle’s
initial mode. Compare WINDOW and FENCE.

See [FENCE], page 41 .

window

WINDOW

tells the turtle to enter window mode: From now on, if the turtle is asked to move past
the boundary of the graphics window, it will move offscreen. The visible graphics window is
considered as just part of an infinite graphics plane; the turtle can be anywhere on the plane.
(If you lose the turtle, HOME will bring it back to the center of the window.) Compare
WRAP and FENCE.

See [HOME], page 39 .

fence

FENCE

tells the turtle to enter fence mode: From now on, if the turtle is asked to move past the
boundary of the graphics window, it will move as far as it can and then stop at the edge
with an "out of bounds" error message. Compare WRAP and WINDOW.

See [WRAP], page 40 .

fill

FILL

fills in a region of the graphics window containing the turtle and bounded by lines that
have been drawn earlier. This is not portable; it doesn’t work for all machines, and may
not work exactly the same way on different machines.

label

LABEL text

takes a word or list as input, and prints the input on the graphics window, starting at
the turtle’s position.

textscreen

TEXTSCREEN
TS

rearranges the size and position of windows to maximize the space available in the text
window (the window used for interaction with Logo). The details differ among machines.
Compare SPLITSCREEN and FULLSCREEN.

See [SPLITSCREEN], page 42 .

42 BERKELEY LOGO 5.5

fullscreen

FULLSCREEN
FS

rearranges the size and position of windows to maximize the space available in the
graphics window. The details differ among machines. Compare SPLITSCREEN and
TEXTSCREEN.

In the DOS version, switching from fullscreen to splitscreen loses the part of the picture
that’s hidden by the text window. Also, since there must be a text window to allow printing
(including the printing of the Logo prompt), Logo automatically switches from fullscreen
to splitscreen whenever anything is printed. [This design decision follows from the scarcity
of memory, so that the extra memory to remember an invisible part of a drawing seems too
expensive.]

splitscreen

SPLITSCREEN
SS

rearranges the size and position of windows to allow some room for text interaction
while also keeping most of the graphics window visible. The details differ among machines.
Compare TEXTSCREEN and FULLSCREEN.

See [TEXTSCREEN], page 41 .

setscrunch

SETSCRUNCH xscale yscale

adjusts the aspect ratio and scaling of the graphics display. After this command is used,
all further turtle motion will be adjusted by multiplying the horizontal and vertical extent
of the motion by the two numbers given as inputs. For example, after the instruction
SETSCRUNCH 2 1 motion at a heading of 45 degrees will move twice as far horizontally
as vertically. If your squares don’t come out square, try this. (Alternatively, you can
deliberately misadjust the aspect ratio to draw an ellipse.)

For Unix machines and Macintoshes, both scale factors are initially 1. For DOS machines,
the scale factors are initially set according to what the hardware claims the aspect ratio
is, but the hardware sometimes lies. The values set by SETSCRUNCH are remembered in
a file (called SCRUNCH.DAT) and are automatically put into effect when a Logo session
begins.

refresh

REFRESH

tells Logo to remember the turtle’s motions so that they can be reconstructed in case
the graphics window is overlayed. The effectiveness of this command may depend on the
machine used.

Chapter 6: Graphics 43

norefresh

NOREFRESH

tells Logo not to remember the turtle’s motions. This will make drawing faster, but
prevents recovery if the window is overlayed.

6.4 Turtle and Window Queries

shownp

SHOWNP
SHOWN?

outputs TRUE if the turtle is shown (visible), FALSE if the turtle is hidden. See SHOW-
TURTLE and HIDETURTLE.

See [SHOWTURTLE], page 40 , [HIDETURTLE], page 40 .

screenmode

SCREENMODE

outputs the word TEXTSCREEN, SPLITSCREEN, or FULLSCREEN depending on
the current screen mode.

turtlemode

TURTLEMODE
outputs the word WRAP, FENCE, or WINDOW depending on the current turtle mode.

6.5 Pen and Background Control

The turtle carries a pen that can draw pictures. At any time the pen can be UP (in
which case moving the turtle does not change what’s on the graphics screen) or DOWN
(in which case the turtle leaves a trace). If the pen is down, it can operate in one of three
modes: PAINT (so that it draws lines when the turtle moves), ERASE (so that it erases
any lines that might have been drawn on or through that path earlier), or REVERSE (so
that it inverts the status of each point along the turtle’s path).

pendown

PENDOWN
PD

sets the pen’s position to DOWN, without changing its mode.

44 BERKELEY LOGO 5.5

penup

PENUP
PU

sets the pen’s position to UP, without changing its mode.
penpaint

PENPAINT
PPT

sets the pen’s position to DOWN and mode to PAINT.

penerase

PENERASE
PE

sets the pen’s position to DOWN and mode to ERASE.
See [ERASE], page 58 .

penreverse

PENREVERSE
PX

sets the pen’s position to DOWN and mode to REVERSE. (This may interact in
hardware-dependent ways with use of color.)

See [REVERSE], page 10 .
setpencolor

SETPENCOLOR colornumber.or.rgblist
SETPC colornumber.or.rgblist

sets the pen color to the given number, which must be a nonnegative integer. There are
initial assignments for the first 16 colors:

0 black 1 blue 2 green 3 cyan

4 red 5 magenta 6 yellow 7 white

8 brown 9 tan 10 forest 11 aqua

12 salmon 13 purple 14 orange 15 grey

but other colors can be assigned to numbers by the PALETTE command. Alternatively,
sets the pen color to the given RGB values (a list of three nonnegative integers less than
64K (65536) specifying the amount of red, green, and blue in the desired color).
setpalette

SETPALETTE colornumber rgblist

Chapter 6: Graphics 45

sets the actual color corresponding to a given number, if allowed by the hardware and
operating system. Colornumber must be an integer greater than or equal to 8. (Logo tries
to keep the first 8 colors constant.) The second input is a list of three nonnegative integers
less than 64K (65536) specifying the amount of red, green, and blue in the desired color.
The actual color resolution on any screen is probably less than 64K, but Logo scales as
needed.

setpensize

SETPENSIZE size

sets the thickness of the pen. The input is either a single positive integer or a list of two
positive integers (for horizontal and vertical thickness). Some versions pay no attention to
the second number, but always have a square pen.

SETPENPATTERN pattern

sets hardware-dependent pen characteristics. This command is not guaranteed compat-
ible between implementations on different machines.

setpenpattern

SETPENSIZE size
SETPENPATTERN pattern

set hardware-dependent pen characteristics. These commands are not guaranteed com-
patible between implementations on different machines.

setpen

SETPEN list (library procedure)

sets the pen’s position, mode, thickness, and hardware-dependent characteristics accord-
ing to the information in the input list, which should be taken from an earlier invocation of
PEN.

See [PEN], page 46 .

setbackground

SETBACKGROUND colornumber.or.rgblist
SETBG colornumber.or.rgblist

set the screen background color by slot number or RGB values. See SETPENCOLOR
for details.

See [SETPENCOLOR], page 44 .

6.6 Pen Queries

46 BERKELEY LOGO 5.5

pendownp

PENDOWNP
PENDOWN?

outputs TRUE if the pen is down, FALSE if it’s up.

penmode

PENMODE

outputs one of the words PAINT, ERASE, or REVERSE according to the current pen
mode.

See [ERASE], page 58 , [REVERSE], page 10 .

pencolor

PENCOLOR
PC
outputs a color number, a nonnegative integer that is associated with a particular color,
or a list of RGB values if such a list was used as the most recent input to SETPENCOLOR.
There are initial assignments for the first 16 colors:

0 Dblack 1 Dblue 2 green 3 cyan
4 red 5 magenta 6 yellow 7 white
8 brown 9 tan 10 forest 11 aqua
12 salmon 13 purple 14 orange 15 grey

but other colors can be assigned to numbers by the PALETTE command.

palette

PALETTE colornumber

outputs a list of three integers, each in the range 0-65535, representing the amount of
red, green, and blue in the color associated with the given number.

pensize

PENSIZE

outputs a list of two positive integers, specifying the horizontal and vertical thickness of
the turtle pen. (In some implementations the two numbers may always be equal.)

PENPATTERN
outputs hardware-specific pen information.

pen

PEN (library procedure)

outputs a list containing the pen’s position, mode, thickness, and hardware-specific
characteristics, for use by SETPEN.

See [SETPEN], page 45 .

Chapter 6: Graphics 47

background

BACKGROUND
BG

outputs the graphics background color, either as a slot number or as an RGB list,
whichever way it was set. (See PENCOLOR.)

6.7 saving and loading pictures

savepict

SAVEPICT filename

command. Writes a file with the specified name containing the state of the graphics
window, including any nonstandard color palette settings, in Logo’s internal format. This
picture can be restored to the screen using LOADPICT. The format is not portable between
platforms, nor is it readable by other programs. [EPSPICT], page 47 to export Logo graphics
for other programs.

loadpict

LOADPICT filename

command. Reads the specified file, which must have been written by a SAVEPICT
command, and restores the graphics window and color palette settings to the values stored
in the file. Any drawing previously on the screen is cleared.

See [SAVEPICT], page 47 .
epspict

EPSPICT filename

command. Writes a file with the specified name, containing an Encapsulated Postscript
(EPS) representation of the state of the graphics window. This file can be imported into
other programs that understand EPS format. Restrictions: the drawing cannot use ARC,
FILL, PENERASE, or PENREVERSE; any such instructions will be ignored in the trans-
lation to Postscript form.

See [ARC], page 39 , See [FILL], page 41 , See [PENERASE], page 44 , See [PENRE-
VERSE], page 44 .

6.8 Mouse Queries

mousepos

MOUSEPOS

48 BERKELEY LOGO 5.5

outputs the coordinates of the mouse, provided that it’s within the graphics window,
in turtle coordinates. If the mouse is outside the graphics window, then the last position
within the window is returned. Exception: If a mouse button is pressed within the graphics
window and held while the mouse is dragged outside the window, the mouse’s position is
returned as if the window were big enough to include it.

buttonp

BUTTONP
BUTTON?

outputs TRUE if a mouse button is down and the mouse is over the graphics window.
Once the button is down, BUTTONP remains true until the button is released, even if the
mouse is dragged out of the graphics window.

buttonp

BUTTON

outputs 0 if BUTTONP would output FALSE; otherwise, it outputs an integer between
1 and 3 indicating which button was pressed. Ordinarily 1 means left, 2 means right, and
3 means center, but operating systems may reconfigure these.

Chapter 7: Workspace Management 49

7 Workspace Management
7.1 Procedure Definition

to

TO procname :inputl :input2 ... (special form)

command. Prepares Logo to accept a procedure definition. The procedure will be named
procname and there must not already be a procedure by that name. The inputs will be
called inputl etc. Any number of inputs are allowed, including none. Names of procedures
and inputs are case-insensitive.

Unlike every other Logo procedure, TO takes as its inputs the actual words typed in the
instruction line, as if they were all quoted, rather than the results of evaluating expressions
to provide the inputs. (That’s what "special form" means.)

This version of Logo allows variable numbers of inputs to a procedure. After the proce-
dure name come four kinds of things, *in this order*:

1. 0 or more REQUIRED inputs :FOO :FROBOZZ

2. 0 or more OPTIONAL inputs [:BAZ 87] [:THINGO 5+9]
3. 0 or 1 REST input [:GARPLY]

4. 0 or 1 DEFAULT number 5

Every procedure has a MINIMUM, DEFAULT, and MAXIMUM number of inputs. (The
latter can be infinite.)

The MINIMUM number of inputs is the number of required inputs, which must come
first. A required input is indicated by the

:inputname
notation.

After all the required inputs can be zero or more optional inputs, each of which is
represented by the following notation:

[:inputname default.value.expression]

When the procedure is invoked, if actual inputs are not supplied for these optional inputs,
the default value expressions are evaluated to set values for the corresponding input names.
The inputs are processed from left to right, so a default value expression can be based on
earlier inputs. Example:

to proc :inlist [:startvalue first :inlist]
If the procedure is invoked by saying
proc [a b c]

then the variable inlist will have the value [A B C] and the variable startvalue will
have the value A. If the procedure is invoked by saying

(proc [a b c] "x)
then inlist will have the value [A B C] and startvalue will have the value X.

After all the required and optional input can come a single rest input, represented by
the following notation:

50 BERKELEY LOGO 5.5

[:inputname]

This is a rest input rather than an optional input because there is no default value
expression. There can be at most one rest input. When the procedure is invoked, the value
of this input will be a list containing all of the actual inputs provided that were not used
for required or optional inputs. Example:

to proc :inl [:in2 "foo] [:in3 "baz] [:in4]
If this procedure is invoked by saying
proc "x
then in1 has the value X, in2 has the value FOO, in3 has the value BAZ,and in4 has
the value [1 (the empty list). If it’s invoked by saying
(proc "a "b llC ||d lle)
then in1 has the value A, in2 has the value B, in3 has the value C, and in4 has the
value [D E]J.

The MAXIMUM number of inputs for a procedure is infinite if a rest input is given;
otherwise, it is the number of required inputs plus the number of optional inputs.

The DEFAULT number of inputs for a procedure, which is the number of inputs that
it will accept if its invocation is not enclosed in parentheses, is ordinarily equal to the
minimum number. If you want a different default number you can indicate that by putting
the desired default number as the last thing on the TO line. example:

to proc :inl [:in2 "foo] [:in3] 3

This procedure has a minimum of one input, a default of three inputs, and an infinite
maximum.

Logo responds to the TO command by entering procedure definition mode. The prompt
character changes from ? to > and whatever instructions you type become part of the
definition until you type a line containing only the word END.

define

DEFINE procname text

command. Defines a procedure with name procname and text text. If there is already a
procedure with the same name, the new definition replaces the old one. The text input must
be a list whose members are lists. The first member is a list of inputs; it looks like a TO
line but without the word TO, without the procedure name, and without the colons before
input names. In other words, the members of this first sublist are words for the names of
required inputs and lists for the names of optional or rest inputs. The remaining sublists of
the text input make up the body of the procedure, with one sublist for each instruction line
of the body. (There is no END line in the text input.) It is an error to redefine a primitive
procedure unless the variable REDEFP has the value TRUE.

See [REDEFP], page 90 .

text

TEXT procname

Chapter 7: Workspace Management 51

outputs the text of the procedure named procname in the form expected by DEFINE:
a list of lists, the first of which describes the inputs to the procedure and the rest of which
are the lines of its body. The text does not reflect formatting information used when the
procedure was defined, such as continuation lines and extra spaces.

fulltext

FULLTEXT procname

outputs a representation of the procedure procname in which formatting information
is preserved. If the procedure was defined with TO, EDIT, or LOAD, then the output is
a list of words. Each word represents one entire line of the definition in the form output
by READWORD, including extra spaces and continuation lines. The last member of the
output represents the END line. If the procedure was defined with DEFINE, then the
output is a list of lists. If these lists are printed, one per line, the result will look like a
definition using TO. Note: the output from FULLTEXT is not suitable for use as input to
DEFINE!

See [TO], page 49 , [EDIT], page 61 , [LOAD], page 63 , [DEFINE], page 50 .

copydef

COPYDEF newname oldname

command. Makes newname a procedure identical to oldname. The latter may be a
primitive. If newname was already defined, its previous definition is lost. If newname was
already a primitive, the redefinition is not permitted unless the variable REDEFP has the
value TRUE.

Note: dialects of Logo differ as to the order of inputs to COPYDEF. This dialect uses
"MAKE order," not "NAME order."

See [REDEFP], page 90 , [SAVE], page 63 , [PO], page 56 , [POT], page 58 .

7.2 Variable Definition

make

MAKE varname value

command. Assigns the value value to the variable named varname, which must be a
word. Variable names are case-insensitive. If a variable with the same name already exists,
the value of that variable is changed. If not, a new global variable is created.

name

NAME value varname (library procedure)

command. Same as MAKE but with the inputs in reverse order.

52 BERKELEY LOGO 5.5

local

LOCAL varname
LOCAL varnamelist
(LOCAL varnamel varname?2 ...)

command. Accepts as inputs one or more words, or a list of words. A variable is created
for each of these words, with that word as its name. The variables are local to the currently
running procedure. Logo variables follow dynamic scope rules; a variable that is local to
a procedure is available to any subprocedure invoked by that procedure. The variables
created by LOCAL have no initial value; they must be assigned a value (e.g., with MAKE)
before the procedure attempts to read their value.

See [MAKE], page 51 .

localmake

LOCALMAKE varname value (library procedure)

command. Makes the named variable local, like LOCAL, and assigns it the given value,
like MAKE.

See [LOCAL], page 52 , See [MAKE], page 51 .

thing

THING varname
:quoted.varname

outputs the value of the variable whose name is the input. If there is more than one
such variable, the innermost local variable of that name is chosen. The colon notation is an
abbreviation not for THING but for the combination

thing "
so that :F00 means THING "FO0O.

global

GLOBAL varname
GLOBAL varnamelist
(GLOBAL varnamel varname2 ...)

command. Accepts as inputs one or more words, or a list of words. A global variable
is created for each of these words, with that word as its name. The only reason this is
necessary is that you might want to use the "setter" notation SETXYZ for a variable XYZ
that does not already have a value; GLOBAL "XYZ makes that legal. Note: If there is
currently a local variable of the same name, this command does *not* make Logo use the
global value instead of the local one.

Chapter 7: Workspace Management 53

7.3 Property Lists

Note: Names of property lists are always case-insensitive. Names of individual properties
are case-sensitive or case-insensitive depending on the value of CASEIGNOREDP, which is
TRUE by default.

See [CASEIGNOREDP], page 89 .

In principle, every possible name is the name of a property list, which is initially empty.
So Logo never gives a "no such property list" error, as it would for undefined procedure
or variable names. But the primitive procedures that deal with "all" property lists (CON-
TENTS, PLISTS, etc.) list only nonempty ones. To "erase" a property list [ERASE],
page 58 means to make it empty, removing all properties from it.

pprop

PPROP plistname propname value

command. Adds a property to the plistname property list with name propname and
value value.

gprop

GPROP plistname propname

outputs the value of the propname property in the plistname property list, or the empty
list if there is no such property.

remprop

REMPROP plistname propname

command. Removes the property named propname from the property list named
plistname.

plist

PLIST plistname

outputs a list whose odd-numbered members are the names, and whose even-numbered
members are the values, of the properties in the property list named plistname. The output
is a copy of the actual property list; changing properties later will not magically change a
list output earlier by PLIST.

7.4 Workspace Predicates

procedurep

PROCEDUREP name
PROCEDURE? name

outputs TRUE if the input is the name of a procedure.

54 BERKELEY LOGO 5.5

primitivep

PRIMITIVEP name
PRIMITIVE? name

outputs TRUE if the input is the name of a primitive procedure (one built into Logo).
Note that some of the procedures described in this document are library procedures, not
primitives.

definedp

DEFINEDP name
DEFINED? name

outputs TRUE if the input is the name of a user-defined procedure, including a library
procedure. (However, Logo does not know about a library procedure until that procedure
has been invoked.)

namep

NAMEP name
NAME? name

outputs TRUE if the input is the name of a variable.

plistp

PLISTP name
PLIST? name

outputs TRUE if the input is the name of a *nonempty* property list. (In principle
every word is the name of a property list; if you haven’t put any properties in it, PLIST of
that name outputs an empty list, rather than giving an error message.)

7.5 Workspace Queries

contents

CONTENTS

outputs a "contents list," i.e., a list of three lists containing names of defined procedures,
variables, and property lists respectively. This list includes all unburied named items in the
workspace.

buried

BURIED

outputs a contents list including all buried named items in the workspace.

Chapter 7: Workspace Management 55

traced

TRACED

outputs a contents list including all traced named items in the workspace.

stepped

STEPPED

outputs a contents list including all stepped named items in the workspace.

procedures

PROCEDURES

outputs a list of the names of all unburied user-defined procedures in the workspace.
Note that this is a list of names, not a contents list. (However, procedures that require a
contents list as input will accept this list.)

primitives

PRIMITIVES

outputs a list of the names of all primitive procedures in the workspace. Note that this
is a list of names, not a contents list. (However, procedures that require a contents list as
input will accept this list.)

names

NAMES

outputs a contents list consisting of an empty list (indicating no procedure names) fol-
lowed by a list of all unburied variable names in the workspace.

plists

PLISTS

outputs a contents list consisting of two empty lists (indicating no procedures or vari-
ables) followed by a list of all unburied nonempty property lists in the workspace.

namelist

NAMELIST varname (library procedure)
NAMELIST varnamelist

outputs a contents list consisting of an empty list followed by a list of the name or names
given as input. This is useful in conjunction with workspace control procedures that require
a contents list as input.

56 BERKELEY LOGO 5.5

pllist

PLLIST plname (library procedure)
PLLIST plnamelist

outputs a contents list consisting of two empty lists followed by a list of the name or
names given as input. This is useful in conjunction with workspace control procedures that
require a contents list as input.

Note: All procedures whose input is indicated as contentslist will accept a single word
(taken as a procedure name), a list of words (taken as names of procedures), or a list of
three lists as described under the CONTENTS command above.

See [CONTENTS], page 54 .
arity

ARITY procedurename

outputs a list of three numbers: the minimum, default, and maximum number of inputs
for the procedure whose name is the input. It is an error if there is no such procedure. A
maximum of -1 means that the number of inputs is unlimited.

nodes

NODES

outputs a list of two numbers. The first represents the number of nodes of memory
currently in use. The second shows the maximum number of nodes that have been in use at
any time since the last invocation of NODES. (A node is a small block of computer memory
as used by Logo. Each number uses one node. Each non-numeric word uses one node, plus
some non-node memory for the characters in the word. Each array takes one node, plus
some non-node memory, as well as the memory required by its elements. Each list requires
one node per element, as well as the memory within the elements.) If you want to track the
memory use of an algorithm, it is best if you invoke GC at the beginning of each iteration,
since otherwise the maximum will include storage that is unused but not yet collected.

7.6 Workspace Inspection

po

PRINTOUT contentslist
PO contentslist

command. Prints to the write stream the definitions of all procedures, variables, and
property lists named in the input contents list.

poall

POALL (library procedure)

Chapter 7: Workspace Management 57

command. Prints all unburied definitions in the workspace. Abbreviates PO CONTENTS.
See [CONTENTS], page 54 .

pops

POPS (library procedure)

command. Prints the definitions of all unburied procedures in the workspace. Abbrevi-
ates PO PROCEDURES

See [PO], page 56 , [PROCEDURES], page 55 .

pons

PONS (library procedure)

command. Prints the definitions of all unburied variables in the workspace. Abbreviates
PO NAMES.

See [PO], page 56 , NAMES], page 55 .

popls

POPLS (library procedure)

command. Prints the contents of all unburied nonempty property lists in the workspace.
Abbreviates PO PLISTS.

See [PO], page 56 , [PLISTS], page 55 .

pon
PON varname (library procedure)
PON varnamelist

command. Prints the definitions of the named variable(s).
Abbreviates PO NAMELIST varname(list).

See [PO], page 56 , [NAMELIST], page 55 .

popl
POPL plname (library procedure)
POPL plnamelist

command. Prints the definitions of the named property list(s).
Abbreviates PO PLLIST plname(list).

See [PO], page 56 , [PLLIST], page 56 .

58 BERKELEY LOGO 5.5

pot

POT contentslist

command. Prints the title lines of the named procedures and the definitions of the
named variables and property lists. For property lists, the entire list is shown on one line
instead of as a series of PPROP instructions as in PO.

See [PPROP], page 53 , [PO], page 56 .

pots

POTS (library procedure)

command. Prints the title lines of all unburied procedures in the workspace. Abbreviates
POT PROCEDURES.

See [PROCEDURES], page 55 .

7.7 Workspace Control

erase
ERASE contentslist
ER contentslist

command. FErases from the workspace the procedures, variables, and property lists
named in the input. Primitive procedures may not be erased unless the variable REDEFP
has the value TRUE.

See [REDEFP], page 90 .

erall

ERALL

command. FErases all unburied procedures, variables, and property lists from the
workspace. Abbreviates ERASE CONTENTS.

See [CONTENTS], page 54 .

erps

ERPS

command. Erases all unburied procedures from the workspace.
Abbreviates ERASE PROCEDURES.

See [ERASE], page 58 , [PROCEDURES], page 55 .

Chapter 7: Workspace Management 59

erns

ERNS
command. Erases all unburied variables from the workspace. Abbreviates ERASE NAMES.
See [ERASE], page 58 , [NAMES], page 55 .

erpls

ERPLS

command. Erases all unburied property lists from the workspace.
Abbreviates ERASE PLISTS.

See [ERASE], page 58 , [PLISTS], page 55 .
ern

ERN varname (library procedure)
ERN varnamelist

command. Erases from the workspace the variable(s) named in the input. Abbreviates
ERASE NAMELIST varname(list).

See [ERASE], page 58 , [NAMELIST], page 55 .
erpl

ERPL plname (library procedure)
ERPL plnamelist

command. Erases from the workspace the property list(s) named in the input. Abbre-
viates ERASE PLLIST plname(list).

See [ERASE], page 58 , [PLLIST], page 56 .
bury

BURY contentslist

command. Buries the procedures, variables, and property lists named in the input.
A buried item is not included in the lists output by CONTENTS, PROCEDURES, VARI-
ABLES, and PLISTS, but is included in the list output by BURIED. By implication, buried
things are not printed by POALL or saved by SAVE.

See [CONTENTS], page 54 , [PROCEDURES], page 55 , [PONS], page 57 , [PLISTS],
page 55 , [POALL], page 56 , [SAVE], page 63 .

buryall

BURYALL (library procedure)
command. Abbreviates BURY CONTENTS.
See [CONTENTS], page 54 .

60 BERKELEY LOGO 5.5

buryname

BURYNAME varname (library procedure)
BURYNAME varnamelist

command. Abbreviates BURY NAMELIST varname(list).
See [BURY], page 59 , INAMELIST], page 55 .

unbury

UNBURY contentslist

command. Unburies the procedures, variables, and property lists named in the input.
That is, the named items will be returned to view in CONTENTS, etc.

See [CONTENTS], page 54 .
unburyall

UNBURYALL (library procedure)
command. Abbreviates UNBURY BURIED.
See [BURIED], page 54 .

unburyname

UNBURYNAME varname (library procedure)
UNBURYNAME varnamelist
command. Abbreviates UNBURY NAMELIST varname(list).
See [UNBURY], page 60 , [NAMELIST], page 55 .

buriedp

BURIEDP contentslist
BURIED? contentslist

outputs TRUE if the first procedure, variable, or property list named in the contents
list is buried, FALSE if not. Only the first thing in the list is tested; the most common use
will be with a word as input, naming a procedure, but a contents list is allowed so that you
can BURIEDP [[] [VARIABLE]] or BURIEDP [[] [] [PROPLIST]].

trace

TRACE contentslist

command. Marks the named items for tracing. A message is printed whenever a traced
procedure is invoked, giving the actual input values, and whenever a traced procedure
STOPs or OUTPUTSs. A message is printed whenever a new value is assigned to a traced
variable using MAKE. A message is printed whenever a new property is given to a traced
property list using PPROP.

See [STOP], page 69 , [OUTPUT], page 69 , [MAKE], page 51 , [PPROP], page 53 .

Chapter 7: Workspace Management 61

untrace

UNTRACE contentslist

command. Turns off tracing for the named items.

tracedp

TRACEDP contentslist
TRACED? contentslist

outputs TRUE if the first procedure, variable, or property list named in the contents list
is traced, FALSE if not. Only the first thing in the list is tested; the most common use will
be with a word as input, naming a procedure, but a contents list is allowed so that you can
TRACEDP [[] [VARIABLE]] or TRACEDP [[] [] [PROPLIST]].

step

STEP contentslist

command. Marks the named items for stepping. Whenever a stepped procedure is
invoked, each instruction line in the procedure body is printed before being executed, and
Logo waits for the user to type a newline at the terminal. A message is printed whenever
a stepped variable name is ‘shadowed’ because a local variable of the same name is created
either as a procedure input or by the LOCAL command.

See [LOCALJ, page 52 .
unstep

UNSTEP contentslist
command. Turns off stepping for the named items.

steppedp

STEPPEDP contentslist
STEPPED? contentslist

outputs TRUE if the first procedure, variable, or property list named in the contents list
is stepped, FALSE if not. Only the first thing in the list is tested; the most common use
will be with a word as input, naming a procedure, but a contents list is allowed so that you
can STEPPEDP [[] [VARIABLE]] or STEPPEDP [[] [] [PROPLIST]].

edit

EDIT contentslist
ED contentslist
(EDIT)

(ED)

command. If invoked with an input, EDIT writes the definitions of the named items into
a temporary file and edits that file, using your favorite editor as determined by the EDITOR

62 BERKELEY LOGO 5.5

environment variable. If you don’t have an EDITOR variable, edits the definitions using
jove. If invoked without an input, EDIT edits the same file left over from a previous EDIT
or EDITFILE instruction. When you leave the editor, Logo reads the revised definitions
and modifies the workspace accordingly. It is not an error if the input includes names for
which there is no previous definition.

If there is a variable LOADNOISILY whose value is TRUE, then, after leaving the editor,
TO commands in the temporary file print "PROCNAME defined" (where PROCNAME is
the name of the procedure being defined); if LOADNOISILY is FALSE or undefined, TO
commands in the file are carried out silently.

If there is an environment variable called TEMP, then Logo uses its value as the directory
in which to write the temporary file used for editing.

Exceptionally, the EDIT command can be used without its default input and without
parentheses provided that nothing follows it on the instruction line.

See [LOADNOISILY], page 89 , See [EDITFILE], page 62 .

editfile

EDITFILE filename

command. Starts the Logo editor, like EDIT, but instead of editing a temporary file it
edits the file specified by the input. When you leave the editor, Logo reads the revised file,
as for EDIT. EDITFILE also remembers the filename, so that a subsequent EDIT command
with no input will re-edit the same file.

EDITFILE is intended as an alternative to LOAD and SAVE. You can maintain a
workspace file yourself, controlling the order in which definitions appear, maintaining com-
ments in the file, and so on.

edall

EDALL (library procedure)
command. Abbreviates EDIT CONTENTS.
See [CONTENTS], page 54 .

edps

EDPS (library procedure)
command. Abbreviates EDIT PROCEDURES.
See [EDIT], page 61 , [PROCEDURES], page 55 .

edns

EDNS (library procedure)
command. Abbreviates EDIT NAMES.
See [EDIT], page 61 , [NAMES], page 55 .

Chapter 7: Workspace Management 63

edpls

EDPLS (library procedure)
command. Abbreviates EDIT PLISTS.
See [EDIT], page 61 , [PLISTS], page 55 .

edn

EDN varname (library procedure)
EDN varnamelist

command. Abbreviates EDIT NAMELIST varname(list).
See [EDIT], page 61 , [NAMELIST], page 55 .

edpl

EDPL plname (library procedure)
EDPL plnamelist

command. Abbreviates EDIT PLLIST plname(list).
See [EDIT], page 61 , [PLLIST], page 56 .

save

SAVE filename

command. Saves the definitions of all unburied procedures, variables, and nonempty
property lists in the named file. Equivalent to

to save :filename
local "oldwriter

make "oldwriter writer
openwrite :filename
setwrite :filename
poall

setwrite :oldwriter
close :filename

end

savel

SAVEL contentslist filename (library procedure)

command. Saves the definitions of the procedures, variables, and property lists specified
by contentslist to the file named filename.

load

LOAD filename

64 BERKELEY LOGO 5.5

command. Reads instructions from the named file and executes them. The file can in-
clude procedure definitions with TO, and these are accepted even if a procedure by the same
name already exists. If the file assigns a list value to a variable named STARTUP, then that
list is run as an instructionlist after the file is loaded. If there is a variable LOADNOISILY
whose value is TRUE, then TO commands in the file print "PROCNAME defined" (where
PROCNAME is the name of the procedure being defined); if LOADNOISILY is FALSE or
undefined, TO commands in the file are carried out silently.

See [STARTUP], page 90 , See [LOADNOISILY], page 89 .

cslsload

CSLSLOAD name

command. Loads the named file, like LOAD, but from the directory containing the
Computer Science Logo Style programs instead of the current user’s directory.

See [LOAD], page 63 .

help

HELP name
(HELP)

command. Prints information from the reference manual about the primitive procedure
named by the input. With no input, lists all the primitives about which help is available.
If there is an environment variable LOGOHELP, then its value is taken as the directory in
which to look for help files, instead of the default help directory.

If HELP is called with the name of a defined procedure for which there is no help file,
it will print the title line of the procedure followed by lines from the procedure body that
start with semicolon, stopping when a non-semicolon line is seen.

Exceptionally, the HELP command can be used without its default input and without
parentheses provided that nothing follows it on the instruction line.

seteditor

SETEDITOR path

command. Tells Logo to use the specified program as its editor instead of the default
editor. The format of a path depends on your operating system.

setlibloc

SETLIBLOC path

command. Tells Logo to use the specified directory as its library instead of the default.
(Note that many Logo "primitive" procedures are actually found in the library, so they
may become unavailable if your new library does not include them!) The format of a path
depends on your operating system.

Chapter 7: Workspace Management 65

setcslsloc

SETCSLSLOC path

command. Tells Logo to use the specified directory for the CSLSLOAD command,
instead of the default directory. The format of a path depends on your operating system.

See [CSLSLOAD], page 64 .
sethelploc

SETHELPLOC path

command. Tells Logo to look in the specified directory for the information provided by
the HELP command, instead of the default directory. The format of a path depends on
your operating system.

settemploc

SETTEMPLOC path

command. Tells Logo to write editor temporary files in the specified directory rather
than in the default directory. You must have write permission for this directory. The format
of a path depends on your operating system.

gc

GC
(GC anything)
command. Runs the garbage collector, reclaiming unused nodes. Logo does this when

necessary anyway, but you may want to use this command to control exactly when Logo does
it. In particular, the numbers output by the NODES operation will not be very meaningful
unless garbage has been collected. Another reason to use GC is that a garbage collection
takes a noticeable fraction of a second, and you may want to schedule collections for times
before or after some time-critical animation. If invoked with an argument (of any value),
GC runs a full garbage collection, including GCTWA (Garbage Collect Truly Worthless
Atoms, which means that it removes from Logo’s memory words that used to be procedure
or variable names but aren’t any more); without an argument, GC does a generational
garbage collection, which means that only recently created nodes are examined. (The latter
is usually good enough.)

.setsegmentsize

.SETSEGMENTSIZE num

command. Sets the number of nodes that Logo allocates from the operating system at
once to num, which mush be a positive integer. The name is dotted because bad things will
happen if you use a number that’s too small or too large for your computer. The initial
value is 16,000 for most systems, but is smaller for 68000-based Macs. Making it larger
will speed up computations (by reducing the number of garbage collections) at the cost of
allocating more memory than necessary.

66

BERKELEY LOGO 5.5

Chapter 8: Control Structures 67

8 Control Structures

8.1 Control

Note: in the following descriptions, an instructionlist can be a list or a word. In the
latter case, the word is parsed into list form before it is run. Thus, RUN READWORD or RUN
READLIST will work. The former is slightly preferable because it allows for a continued line
(with ~) that includes a comment (with ;) on the first line.

A tf input must be the word TRUE, the word FALSE, or a list. If it’s a list, then it
must be a Logo expression, which will be evaluated to produce a value that must be TRUE
or FALSE. The comparisons with TRUE and FALSE are always case-insensitive.

run

RUN instructionlist

command or operation. Runs the Logo instructions in the input list; outputs if the list
contains an expression that outputs.

See [READWORD], page 20 , [READLIST], page 20 .

runresult

RUNRESULT instructionlist

runs the instructions in the input; outputs an empty list if those instructions produce no
output, or a list whose only member is the output from running the input instructionlist.
Useful for inventing command-or-operation control structures:

local "result

make "result runresult [something]
if emptyp :result [stop]

output first :result

repeat

REPEAT num instructionlist

command. Runs the instructionlist repeatedly, num times.

forever

FOREVER instructionlist

command. Runs the "instructionlist" repeatedly, until something inside the instruction-
list (such as STOP or THROW) makes it stop.

See [STOP], page 69 , See [THROW], page 69 .

68 BERKELEY LOGO 5.5

repcount

REPCOUNT

outputs the repetition count of the innermost current REPEAT or FOREVER, starting
from 1. If no REPEAT or FOREVER is active, outputs —1.

if

IF tf instructionlist
(IF tf instructionlistl instructionlist?2)

command. If the first input has the value TRUE, then IF runs the second input. If the
first input has the value FALSE, then IF does nothing. (If given a third input, IF acts like
IFELSE, as described below.) It is an error if the first input is not either TRUE or FALSE.

For compatibility with earlier versions of Logo, if an IF instruction is not enclosed in
parentheses, but the first thing on the instruction line after the second input expression is
a literal list (i.e., a list in square brackets), the IF is treated as if it were IFELSE, but a
warning message is given. If this aberrant IF appears in a procedure body, the warning is
given only the first time the procedure is invoked in each Logo session.

ifelse

IFELSE tf instructionlistl instructionlist2

command or operation. If the first input has the value TRUE, then IFELSE runs the
second input. If the first input has the value FALSE, then IFELSE runs the third input.
IFELSE outputs a value if the instructionlist contains an expression that outputs a value.

test

TEST tf

command. Remembers its input, which must be TRUE or FALSE, for use by later
IFTRUE or IFFALSE instructions. The effect of TEST is local to the procedure in which
it is used; any corresponding IFTRUE or IFFALSE must be in the same procedure or a
subprocedure.

See [IFFALSE], page 68 .
iftrue

IFTRUE instructionlist
IFT instructionlist

command. Runs its input if the most recent TEST instruction had a TRUE input. The
TEST must have been in the same procedure or a superprocedure.

iffalse

IFFALSE instructionlist

Chapter 8: Control Structures 69

IFF instructionlist

command. Runs its input if the most recent TEST instruction had a FALSE input. The
TEST must have been in the same procedure or a superprocedure.

See [TEST], page 68 .
stop

STOP

command. Ends the running of the procedure in which it appears. Control is returned to
the context in which that procedure was invoked. The stopped procedure does not output
a value.

output

OUTPUT value
0P value

command. Ends the running of the procedure in which it appears. That procedure out-
puts the value value to the context in which it was invoked. Don’t be confused: OUTPUT
itself is a command, but the procedure that invokes OUTPUT is an operation.

catch

CATCH tag instructionlist

command or operation. Runs its second input. Outputs if that instructionlist outputs.
If, while running the instructionlist, a THROW instruction is executed with a tag equal
to the first input (case-insensitive comparison), then the running of the instructionlist is
terminated immediately. In this case the CATCH outputs if a value input is given to
THROW. The tag must be a word.

If the tag is the word ERROR, then any error condition that arises during the running of
the instructionlist has the effect of THROW "ERROR instead of printing an error message
and returning to toplevel. The CATCH does not output if an error is caught. Also, during
the running of the instructionlist, the variable ERRACT is temporarily unbound. (If there
is an error while ERRACT has a value, that value is taken as an instructionlist to be
run after printing the error message. Typically the value of ERRACT, if any, is the list
[PAUSE].)

See [ERROR], page 70 , [ERRACT], page 89 , [PAUSE], page 70 .
throw

THROW tag
(THROW tag value)
command. Must be used within the scope of a CATCH with an equal tag. Ends the
running of the instructionlist of the CATCH. If THROW is used with only one input, the
corresponding CATCH does not output a value. If THROW is used with two inputs, the
second provides an output for the CATCH.

70 BERKELEY LOGO 5.5

THROW "TOPLEVEL can be used to terminate all running procedures and interactive
pauses, and return to the toplevel instruction prompt. Typing the system interrupt char-

acter (normally for Unix, for DOS, or for Mac) has the

same effect.

THROW "ERROR can be used to generate an error condition. If the error is not caught, it
prints a message (THROW "ERROR) with the usual indication of where the error (in this
case the THROW) occurred. If a second input is used along with a tag of ERROR, that
second input is used as the text of the error message instead of the standard message. Also,
in this case, the location indicated for the error will be, not the location of the THROW,
but the location where the procedure containing the THROW was invoked. This allows
user-defined procedures to generate error messages as if they were primitives. Note: in this
case the corresponding CATCH "ERROR, if any, does not output, since the second input to
THROW is not considered a return value.

THROW "SYSTEM immediately leaves Logo, returning to the operating system, without
printing the usual parting message and without deleting any editor temporary file written
by EDIT.

See [EDIT], page 61 .
error

ERROR

outputs a list describing the error just caught, if any. If there was not an error caught
since the last use of ERROR, the empty list will be output. The error list contains four
members: an integer code corresponding to the type of error, the text of the error message,
the name of the procedure in which the error occurred, and the instruction line on which
the error occurred.

pause

PAUSE

command or operation. Enters an interactive pause. The user is prompted for instruc-
tions, as at toplevel, but with a prompt that includes the name of the procedure in which
PAUSE was invoked. Local variables of that procedure are available during the pause.
PAUSE outputs if the pause is ended by a CONTINUE with an input.

If the variable ERRACT exists, and an error condition occurs, the contents of that
variable are run as an instructionlist. Typically ERRACT is given the value [PAUSE] so
that an interactive pause will be entered on the event of an error. This allows the user to
check values of local variables at the time of the error.

Typing the system quit character (normally for Unix, (ontrow) for DOS, or
for Mac) will also enter a pause.

See [ERRACT], page 89 .
continue

CONTINUE wvalue

Chapter 8: Control Structures 71

CO value
(CONTINUE)
(co)

command. Ends the current interactive pause, returning to the context of the PAUSE
invocation that began it. If CONTINUE is given an input, that value is used as the output
from the PAUSE. If not, the PAUSE does not output.

Exceptionally, the CONTINUE command can be used without its default input and
without parentheses provided that nothing follows it on the instruction line.

wait

WAIT time

command. Delays further execution for time 60ths of a second. Also causes any buffered
characters destined for the terminal to be printed immediately. WAIT O can be used to
achieve this buffer flushing without actually waiting.

bye

BYE

command. Exits from Logo; returns to the operating system.

.maybeoutput

.MAYBEQUTPUT value (special form)

works like OUTPUT except that the expression that provides the input value might
not, in fact, output a value, in which case the effect is like STOP. This is intended for use
in control structure definitions, for cases in which you don’t know whether or not some
expression produces a value. Example:

to invoke :function [:inputs] 2
.maybeoutput apply :function :inputs
end

? (invoke "print "a "b "c)
abc
7 print (invoke "word "a "b "c)
abc
This is an alternative to RUNRESULT. It’s fast and easy to use, at the cost of being
an exception to Logo’s evaluation rules. (Ordinarily, it should be an error if the expression
that’s supposed to provide an input to something doesn’t have a value.)

See [OUTPUT], page 69 , [STOP], page 69 , RUNRESULT], page 67 .

goto

GOTO word

72 BERKELEY LOGO 5.5

command. Looks for a TAG command with the same input in the same procedure, and
continues running the procedure from the location of that TAG. It is meaningless to use
GOTO outside of a procedure.

tag

TAG quoted.word

command. Does nothing. The input must be a literal word following a quotation mark
("), not the result of a computation. Tags are used by the GOTO command.

ignore

IGNORE value (library procedure)

command. Does nothing. Used when an expression is evaluated for a side effect and its
actual value is unimportant.

¢ list (library procedure)

outputs a list equal to its input but with certain substitutions. If a member of the input
list is the word *,’ (comma) then the following member should be an instructionlist that
produces an output when run. That output value replaces the comma and the instruc-
tionlist. If a member of the input list is the word ‘,@ (comma atsign) then the following
member should be an instructionlist that outputs a list when run. The members of that
list replace the ¢,@ and the instructionlist. Example:

show ‘[foo baz ,[bf [a b c]] garply ,@[bf [a b c]l]
will print
[foo baz [b c] garply b c]
A word starting with ‘,” or ¢, @’ is treated as if the rest of the word were a one-word list,
e.g., ‘,:foo’ is equivalent to ‘, [:Foo]l’.

A word starting with ‘", (quote comma) or ‘:,’ (colon comma) becomes a word starting
with ‘"’ or ‘:” but with the result of running the substitution (or its first word, if the result
is a list) replacing what comes after the comma.

Backquotes can be nested. Substitution is done only for commas at the same depth as
the backquote in which they are found:

? show ‘[a ‘[b ,[1+2] ,[foo ,[1+3] d] e] f]
[a “ [b, [1+2] , [foo 4 d] e] f]

?make "namel "x

?make "name2 "y

? show ‘[a ‘[b ,:,:namel ,",:name2 d] el
[a “ [b, [:x] , ["y] d] el

Chapter 8: Control Structures 73

for

FOR forcontrol instructionlist (library procedure)

command. The first input must be a list containing three or four members: (1) a word,
which will be used as the name of a local variable; (2) a word or list that will be evaluated
as by RUN to determine a number, the starting value of the variable; (3) a word or list that
will be evaluated to determine a number, the limit value of the variable; (4) an optional
word or list that will be evaluated to determine the step size. If the fourth member is
missing, the step size will be 1 or —1 depending on whether the limit value is greater than
or less than the starting value, respectively.

The second input is an instructionlist. The effect of FOR is to run that instructionlist
repeatedly, assigning a new value to the control variable (the one named by the first member
of the forcontrol list) each time. First the starting value is assigned to the control variable.
Then the value is compared to the limit value. FOR is complete when the sign of (current-
limit) is the same as the sign of the step size. (If no explicit step size is provided, the
instructionlist is always run at least once. An explicit step size can lead to a zero-trip FOR,
e.g., FOR [I 1 0 1] ...). Otherwise, the instructionlist is run, then the step is added to
the current value of the control variable and FOR returns to the comparison step.

7 for [i 2 7 1.5] [print :i]
2
.5

N O O W
o

See [RUN], page 67 .
do.while

DO.WHILE instructionlist tfexpression (library procedure)

command. Repeatedly evaluates the instructionlist as long as the evaluated
tfexpres-sion remains TRUE. Evaluates the first input first, so the instructionlist is
always run at least once. The tfexpression must be an expressionlist whose value when

evaluated is TRUE or FALSE.

while

WHILE tfexpression instructionlist (library procedure)

command. Repeatedly evaluates the instructionlist as long as the evaluated
tfexpres-sion remains TRUE. Evaluates the first input first, so the instructionlist
may never be run at all. The tfexpression must be an expressionlist whose value when
evaluated is TRUE or FALSE.

do.until

DO.UNTIL instructionlist tfexpression (library procedure)

74 BERKELEY LOGO 5.5

command. Repeatedly evaluates the instructionlist as long as the evaluated
tfexpres-sion remains FALSE. Evaluates the first input first, so the instructionlist is
always run at least once. The tfexpression must be an expressionlist whose value when

evaluated is TRUE or FALSE.

until

UNTIL tfexpression instructionlist (library procedure)

command. Repeatedly evaluates the instructionlist as long as the evaluated
tfexpres-sion remains FALSE. Evaluates the first input first, so the instructionlist
may never be run at all. The tfexpression must be an expressionlist whose value when

evaluated is TRUE or FALSE.

case

CASE value clauses (library procedure)

command or operation. The second input is a list of lists (clauses); each clause is a list
whose first element is either a list of values or the word ELSE and whose butfirst is a Logo
expression or instruction. CASE examines the clauses in order. If a clause begins with the
word ELSE (upper or lower case), then the butfirst of that clause is evaluated and CASE
outputs its value, if any. If the first input to CASE is a member of the first element of a
clause, then the butfirst of that clause is evaluated and CASE outputs its value, if any. If
neither of these conditions is met, then CASE goes on to the next clause. If no clause is
satisfied, CASE does nothing. Example:

to vowelp :letter
output case :letter [[[a e i o ul "true] [else "false]]
end

cond

COND clauses (library procedure)

command or operation. The input is a list of lists (clauses); each clause is a list whose
first element is either an expression whose value is TRUE or FALSE, or the word ELSE, and
whose butfirst is a Logo expression or instruction. COND examines the clauses in order. If
a clause begins with the word ELSE (upper or lower case), then the butfirst of that clause
is evaluated and CASE outputs its value, if any. Otherwise, the first element of the clause
is evaluated; the resulting value must be TRUE or FALSE. If it’s TRUE, then the butfirst
of that clause is evaluated and COND outputs its value, if any. If the value is FALSE, then
COND goes on to the next clause. If no clause is satisfied, COND does nothing. Example:

to evens :numbers ; select even numbers from a list

op cond [[[emptyp :numbers] []]
[[evenp first :numbers] ; assuming EVENP is defined
fput first :numbers evens butfirst :numbers]
[else evens butfirst :numbers]]

end

Chapter 8: Control Structures 75

8.2 Template-based Iteration

The procedures in this section are iteration tools based on the idea of a template. This
is a generalization of an instruction list or an expression list in which slots are provided
for the tool to insert varying data. Four different forms of template can be used.

The most commonly used form for a template is ‘explicit-slot’ form, or ‘question
mark’ form. Example:

7 show map [? * 7] [2 3 4 5]
[4 9 16 25]
?

In this example, the MAP tool evaluated the template [? * 7] repeatedly, with each of
the members of the data list [2 3 4 5] substituted in turn for the question marks. The same
value was used for every question mark in a given evaluation. Some tools allow for more
than one datum to be substituted in parallel; in these cases the slots are indicated by 71
for the first datum, 72 for the second, and so on:

? show (map [(word 71 72 ?71)] [a b c] [d e £1)
[ada beb cfc]
?
If the template wishes to compute the datum number, the form (7 1) is equivalent to 71,
so (7 ?1) means the datum whose number is given in datum number 1. Some tools allow
additional slot designations, as shown in the individual descriptions.

The second form of template is the ‘named-procedure’ form. If the template is a word
rather than a list, it is taken as the name of a procedure. That procedure must accept
a number of inputs equal to the number of parallel data slots provided by the tool; the
procedure is applied to all of the available data in order. That is, if data 71 through 73 are
available, the template "PROC is equivalent to [PROC 71 72 73].

? show (map "word [a b c] [d e f])

[ad be cf]
?

to dotprod :a :b ; vector dot product
op apply "sum (map "product :a :b)
end
The third form of template is ‘named-slot’ or ‘lambda’ form. This form is indicated
by a template list containing more than one member, whose first member is itself a list.
The first member is taken as a list of names; local variables are created with those names
and given the available data in order as their values. The number of names must equal the
number of available data. This form is needed primarily when one iteration tool must be
used within the template list of another, and the ? notation would be ambiguous in the
inner template. Example:
to matmul :ml :m2 [:tm2 transpose :m2] ; multiply two matrices
output map [[row] map [[col] dotprod :row :coll :tm2] :ml
end
The fourth form is ‘procedure text’ form, a variant of lambda form. In this form, the
template list contains at least two members, all of which are lists. This is the form used

76 BERKELEY LOGO 5.5

by the DEFINE and TEXT primitives, and APPLY accepts it so that the text of a defined
procedure can be used as a template.

Note: The fourth form of template is interpreted differently from the others, in that
Logo considers it to be an independent defined procedure for the purposes of OUTPUT and
STOP. For example, the following two instructions are identical:

? print apply [[x] :x+3] [5]

8

? print apply [[x] [output :x+3]] [5]
8

although the first instruction is in named-slot form and the second is in procedure-text
form. The named-slot form can be understood as telling Logo to evaluate the expression
:x+3 in place of the entire invocation of apply, with the variable x temporarily given the
value 5. The procedure-text form can be understood as invoking the procedure
to foo :x
output :x+3
end

with input 5, but without actually giving the procedure a name. If the use of OUTPUT
were interchanged in these two examples, we’d get errors:
? print apply [[x] output :x+3] [5]
Can only use output inside a procedure
? print apply [[x] [:x+3]]1 [5]
You don’t say what to do with 8

The named-slot form can be used with STOP or OUTPUT inside a procedure, to stop
the enclosing procedure.

The following iteration tools are extended versions of the ones in Appendix B of the
book _Computer_Science_Logo_Style, Volume_3: _Advanced _Topics. by Brian Harvey
[MIT Press, 1987]. The extensions are primarily to allow for variable numbers of inputs.

apply

APPLY template inputlist

command or operation. Runs the "template," filling its slots with the members of
inputlist. The number of members in inputlist must be an acceptable number of slots
for template. It is illegal to apply the primitive TO as a template, but anything else is
okay. APPLY outputs what template outputs, if anything.

See [TO], page 49 .

invoke

INVOKE template input (library procedure)
(INVOKE template inputl input2 ...)

command or operation. Exactly like APPLY except that the inputs are provided as
separate expressions rather than in a list.

Chapter 8: Control Structures 7

foreach

FOREACH data template (library procedure)
(FOREACH datal data2 ... template)

command. Evaluates the template list repeatedly, once for each member of the data list.
If more than one data list are given, each of them must be the same length. (The data
inputs can be words, in which case the template is evaluated once for each character.

In a template, the symbol 7TREST represents the portion of the data input to the right
of the member currently being used as the 7 slot-filler. That is, if the data input is
[A B C D E] and the template is being evaluated with ? replaced by B, then YREST would
be replaced by [C D E|. If multiple parallel slots are used, then (?REST 1) goes with 71,
etc.

In a template, the symbol # represents the position in the data input of the member
currently being used as the ? slot-filler. That is, if the data input is [A B C D E] and the
template is being evaluated with ? replaced by B, then # would be replaced by 2.

map

MAP template data (library procedure)
(MAP template datal data2 ...)

outputs a word or list, depending on the type of the data input, of the same length as
that data input. (If more than one data input are given, the output is of the same type as
datal.) Each member of the output is the result of evaluating the template list, filling the
slots with the corresponding member(s) of the data input(s). (All data inputs must be the
same length.) In the case of a word output, the results of the template evaluation must be
words, and they are concatenated with WORD.

In a template, the symbol 7TREST represents the portion of the data input to the right
of the member currently being used as the 7 slot-filler. That is, if the data input is
[A B C D E] and the template is being evaluated with ? replaced by B, then "REST would
be replaced by [C D E|. If multiple parallel slots are used, then (?REST 1) goes with 71,
etc.

In a template, the symbol # represents the position in the data input of the member

currently being used as the ? slot-filler. That is, if the data input is [A B C D E] and the
template is being evaluated with ? replaced by B, then # would be replaced by 2.

See [WORD], page 9 .
map.se

MAP.SE template data (library procedure)
(MAP.SE template datal data2 ...)

outputs a list formed by evaluating the template list repeatedly and concatenating the
results using SENTENCE. That is, the members of the output are the members of the
results of the evaluations. The output list might, therefore, be of a different length from
that of the data input(s). (If the result of an evaluation is the empty list, it contributes
nothing to the final output.) The data inputs may be words or lists.

78 BERKELEY LOGO 5.5

In a template, the symbol 7TREST represents the portion of the data input to the right
of the member currently being used as the 7 slot-filler. That is, if the data input is
[A B C D E] and the template is being evaluated with ? replaced by B, then 7REST would
be replaced by [C D E|. If multiple parallel slots are used, then (?REST 1) goes with 71,
etc.

In a template, the symbol # represents the position in the data input of the member
currently being used as the ? slot-filler. That is, if the data input is [A B C D E] and the
template is being evaluated with ? replaced by B, then # would be replaced by 2.

See [SENTENCE], page 9 .

filter

FILTER tftemplate data (library procedure)

outputs a word or list, depending on the type of the data input, containing a subset of
the members (for a list) or characters (for a word) of the input. The template is evaluated
once for each member or character of the data, and it must produce a TRUE or FALSE
value. If the value is TRUE, then the corresponding input constituent is included in the
output.

? print filter "vowelp "elephant

eea
7

In a template, the symbol 7TREST represents the portion of the data input to the right
of the member currently being used as the 7 slot-filler. That is, if the data input is
[A B C D E] and the template is being evaluated with ? replaced by B, then 7REST would
be replaced by [C D E]J.

In a template, the symbol # represents the position in the data input of the member
currently being used as the ? slot-filler. That is, if the data input is [A B C D E] and the
template is being evaluated with ? replaced by B, then # would be replaced by 2.

find

FIND tftemplate data (library procedure)

outputs the first constituent of the data input (the first member of a list, or the first
character of a word) for which the value produced by evaluating the template with that
consituent in its slot is TRUE. If there is no such constituent, the empty list is output.

In a template, the symbol 7TREST represents the portion of the data input to the right
of the member currently being used as the 7 slot-filler. That is, if the data input is
[A B C D E] and the template is being evaluated with ? replaced by B, then "REST would
be replaced by [C D E]J.

In a template, the symbol # represents the position in the data input of the member
currently being used as the 7 slot-filler. That is, if the data input is [A B C D E] and the
template is being evaluated with ? replaced by B, then # would be replaced by 2.

Chapter 8: Control Structures 79

reduce

REDUCE template data (library procedure)

outputs the result of applying the template to accumulate the members of the data
input. The template must be a two-slot function. Typically it is an associative function
name like "SUM. If the data input has only one constituent (member in a list or character
in a word), the output is that consituent. Otherwise, the template is first applied with 71
filled with the next-to-last consitient and 72 with the last constituent. Then, if there are
more constituents, the template is applied with 71 filled with the next constituent to the
left and 72 with the result from the previous evaluation. This process continues until all
constituents have been used. The data input may not be empty.

Note: If the template is, like SUM, the name of a procedure that is capable of accepting
arbitrarily many inputs, it is more efficient to use APPLY instead of REDUCE. The latter
is good for associative procedures that have been written to accept exactly two inputs:

to max :a :b
output ifelse :a > :b [:a] [:b]
end

print reduce "max [...]

Alternatively, REDUCE can be used to write MAX as a procedure that accepts any
number of inputs, as SUM does:

to max [:inputs] 2
if emptyp :inputs ~

[(throw "error [not enough inputs to max])]
output reduce [ifelse 71 > 72 [?1] [72]] :inputs
end

See [SUM], page 29 , [APPLY], page 76 .
crossmap

CROSSMAP template listlist (library procedure)
(CROSSMAP template datal data2 ...)

outputs a list containing the results of template evaluations. Each data list contributes
to a slot in the template; the number of slots is equal to the number of data list inputs.
As a special case, if only one data list input is given, that list is taken as a list of data
lists, and each of its members contributes values to a slot. CROSSMAP differs from MAP
in that instead of taking members from the data inputs in parallel, it takes all possible
combinations of members of data inputs, which need not be the same length.

7 show (crossmap [word 71 72] [a b c] [1 2 3 4])

[al a2 a3 a4 bl b2 b3 b4 cl c2 c3 c4]
7

For compatibility with the version in the first edition of CSLS!, CROSSMAP templates
may use the notation :1 instead of 71 to indicate slots.
See [MAP], page 77 .

L Computer Science Logo Style

80 BERKELEY LOGO 5.5

cascade

CASCADE endtest template startvalue (library procedure)
(CASCADE endtest tmpl svl tmp2 sv2 ...)
(CASCADE endtest tmpl svl tmp2 sv2 ... finaltemplate)

outputs the result of applying a template (or several templates, as explained below)
repeatedly, with a given value filling the slot the first time, and the result of each application
filling the slot for the following application.

In the simplest case, CASCADE has three inputs. The second input is a one-slot expres-
sion template. That template is evaluated some number of times (perhaps zero). On the
first evaluation, the slot is filled with the third input; on subsequent evaluations, the slot is
filled with the result of the previous evaluation. The number of evaluations is determined
by the first input. This can be either a nonnegative integer, in which case the template is
evaluated that many times, or a predicate expression template, in which case it is evaluated
(with the same slot filler that will be used for the evaluation of the second input) repeatedly,
and the CASCADE evaluation continues as long as the predicate value is FALSE. (In other
words, the predicate template indicates the condition for stopping,.)

If the template is evaluated zero times, the output from CASCADE is the third (start-
value) input. Otherwise, the output is the value produced by the last template evaluation.

CASCADE templates may include the symbol # to represent the number of times the
template has been evaluated. This slot is filled with 1 for the first evaluation, 2 for the
second, and so on.

7 show cascade 5 [lput # 7] []

[1 234 5]

? show cascade [vowelp first 7] [bf 7] "spring
ing

? show cascade 5 [# * 7] 1

120
?

Several cascaded results can be computed in parallel by providing additional template-
startvalue pairs as inputs to CASCADE. In this case, all templates (including the endtest
template, if used) are multi-slot, with the number of slots equal to the number of pairs
of inputs. In each round of evaluations, 72 represents the result of evaluating the second
template in the previous round. If the total number of inputs (including the first endtest
input) is odd, then the output from CASCADE is the final value of the first template. If
the total number of inputs is even, then the last input is a template that is evaluated once,
after the end test is satisfied, to determine the output from CASCADE.

to fibonacci :n
output (cascade :n [?71 + 72] 1 [71] 0)
end

to piglatin :word

output (cascade [vowelp first 7] ~
[word bf 7 first 7] ~
:word ~

Chapter 8: Control Structures 81

[word 7 "ayl)
end

cascade.2

CASCADE.2 endtest templ startvall temp2 startval2 (library procedure)

outputs the result of invoking CASCADE with the same inputs. The only difference is
that the default number of inputs is five instead of three.

transfer

TRANSFER endtest template inbasket (library procedure)

outputs the result of repeated evaluation of the template. The template is evaluated
once for each member of the list inbasket. TRANSFER maintains an outbasket that is
initially the empty list. After each evaluation of the template, the resulting value becomes
the new outbasket.

In the template, the symbol 7IN represents the current member from the inbasket; the
symbol 7OUT represents the entire current outbasket. Other slot symbols should not be
used.

If the first (endtest) input is an empty list, evaluation continues until all inbasket mem-
bers have been used. If not, the first input must be a predicate expression template, and
evaluation continues until either that template’s value is TRUE or the inbasket is used up.

82

BERKELEY LOGO 5.5

Chapter 9: Macros 83

9 Macros

.macro

.MACRO procname :inputl :input2 ... (special form)
.DEFMACRO procname text

A macro is a special kind of procedure whose output is evaluated as Logo instructions in
the context of the macro’s caller. .MACRO is exactly like TO except that the new procedure
becomes a macro; .DEFMACRO is exactly like DEFINE with the same exception.

Macros are useful for inventing new control structures comparable to REPEAT, IF, and
so on. Such control structures can almost, but not quite, be duplicated by ordinary Logo
procedures. For example, here is an ordinary procedure version of REPEAT:

to my.repeat :num :instructions
if :num=0 [stop]

run :instructions

my.repeat :num-1 :instructions
end

This version works fine for most purposes, e.g.,
my.repeat 5 [print "hello]

But it doesn’t work if the instructions to be carried out include OUTPUT, STOP, or
LOCAL. For example, consider this procedure:

to example
print [Guess my secret word. You get three guesses.]
repeat 3 [type "I?7 | ~
if readword = "secret [pr "Right! stopl]
print [Sorry, the word was "secret"!]
end

This procedure works as written, but if MY.REPEAT is used instead of REPEAT, it
won’t work because the STOP will stop MY.REPEAT instead of stopping EXAMPLE as
desired.

The solution is to make MY.REPEAT a macro. Instead of actually carrying out the
computation, a macro must return a list containing Logo instructions. The contents of that
list are evaluated as if they appeared in place of the call to the macro. Here’s a macro
version of REPEAT:

.macro my.repeat :num :instructions
if :num=0 [output []]
output sentence :instructions ~
(list "my.repeat :num-1 :instructions)
end

Every macro is an operation — it must always output something. Even in the base case,
MY.REPEAT outputs an empty instruction list. To show how MY.REPEAT works, let’s
take the example

my.repeat 5 [print "hello]
For this example, MY.REPEAT will output the instruction list

84 BERKELEY LOGO 5.5

[print "hello my.repeat 4 [print "hello]]

Logo then executes these instructions in place of the original invocation of MY.REPEAT;
this prints hello once and invokes another repetition.

The technique just shown, although fairly easy to understand, has the defect of slow-
ness because each repetition has to construct an instruction list for evaluation. Another
approach is to make my.repeat a macro that works just like the non-macro version unless
the instructions to be repeated include OUTPUT or STOP:

.macro my.repeat :num :instructions
catch "repeat.catchtag ~
[op repeat.done runresult [repeatl :num :instructions]]
op I[1I
end

to repeatl :num :instructions

if :num=0 [throw "repeat.catchtag]

run :instructions

.maybeoutput repeatl :num-1 :instructions
end

to repeat.done :repeat.result

if emptyp :repeat.result [op [stop]l]

op list "output quoted first :repeat.result
end

If the instructions do not include STOP or OUTPUT, then REPEAT1 will reach its
base case and invoke THROW. As a result, my.repeat’s last instruction line will output an
empty list, so the second evaluation of the macro result will do nothing. But if a STOP
or OUTPUT happens, then REPEAT.DONE will output a STOP or OUTPUT instruction
that will be re-executed in the caller’s context.

The macro-defining commands have names starting with a dot because macros are an
advanced feature of Logo; it’s easy to get in trouble by defining a macro that doesn’t
terminate, or by failing to construct the instruction list properly.

Lisp users should note that Logo macros are NOT special forms. That is, the inputs to
the macro are evaluated normally, as they would be for any other Logo procedure. It’s only
the output from the macro that’s handled unusually.

Here’s another example:

.macro localmake :name :value
output (1list "local”
word "" :name
"apply
""make
(list :name :value))

end
It’s used this way:

to try
localmake "garply "hello

Chapter 9: Macros 85

print :garply
end
LOCALMAKE outputs the list
[local "garply apply "make [garply hello]]
The reason for the use of APPLY is to avoid having to decide whether or not the second

input to MAKE requires a quotation mark before it. (In this case it would — MAKE
"GARPLY "HELLO — but the quotation mark would be wrong if the value were a list.)

It’s often convenient to use the ¢ function to construct the instruction list:

.macro localmake :name :value
op ‘[local ,[word "" :name] apply "make [, [:name] ,[:value]l]]
end

On the other hand, ¢ is pretty slow, since it’s tree recursive and written in Logo.

See [TO], page 49 , [DEFINE], page 50 , [APPLY], page 76 , [STOP], page 69 , [OUT-
PUT], page 69 .

.defmacro

See [AIMACRO)], page 83 .
macrop

MACROP name
MACRO? name

outputs TRUE if its input is the name of a macro.
macroexpand

MACROEXPAND expr (library procedure)

takes as its input a Logo expression that invokes a macro (that is, one that begins with
the name of a macro) and outputs the the Logo expression into which the macro would
translate the input expression.

.macro localmake :name :value

op ‘[local ,[word "" :name] apply "make [, [:name] ,[:value]ll]
end

? show macroexpand [localmake "pi 3.14159]
[local "pi apply "make [pi 3.14159]]

86

BERKELEY LOGO 5.5

Chapter 10: Error Processing 87

10 Error Processing

If an error occurs, Logo takes the following steps. First, if there is an available variable
named ERRACT), Logo takes its value as an instructionlist and runs the instructions. The
operation ERROR may be used within the instructions (once) to examine the error condi-
tion. If the instructionlist invokes PAUSE, the error message is printed before the pause
happens. Certain errors are "recoverable"; for one of those errors, if the instructionlist out-
puts a value, that value is used in place of the expression that caused the error. (If ERRACT
invokes PAUSE and the user then invokes CONTINUE with an input, that input becomes
the output from PAUSE and therefore the output from the ERRACT instructionlist.)

It is possible for an ERRACT instructionlist to produce an inappropriate value or no
value where one is needed. As a result, the same error condition could recur forever because
of this mechanism. To avoid that danger, if the same error condition occurs twice in a row
from an ERRACT instructionlist without user interaction, the message "Erract loop" is
printed and control returns to toplevel. "Without user interaction" means that if ERRACT
invokes PAUSE and the user provides an incorrect value, this loop prevention mechanism
does not take effect and the user gets to try again.

During the running of the ERRACT instructionlist, ERRACT is locally unbound, so an
error in the ERRACT instructions themselves will not cause a loop. In particular, an error
during a pause will not cause a pause-within-a-pause unless the user reassigns the value
[PAUSE| to ERRACT during the pause. But such an error will not return to toplevel; it
will remain within the original pause loop.

If there is no available ERRACT value, Logo handles the error by generating an inter-
nal THROW "ERROR. (A user program can also generate an error condition deliberately by
invoking THROW.) If this throw is not caught by a CATCH "ERROR in the user program,
it is eventually caught either by the toplevel instruction loop or by a pause loop, which
prints the error message. An invocation of CATCH "ERROR in a user program locally unbinds
ERRACT, so the effect is that whichever of ERRACT and CATCH "ERROR is more local will
take precedence.

If a floating point overflow occurs during an arithmetic operation, or a two-input math-
ematical function (like POWER) is invoked with an illegal combination of inputs, the
‘doesn’t like’ message refers to the second operand, but should be taken as meaning
the combination.

See [ERRACT], page 89 , [THROW], page 69 , [ERROR], page 70 , [CATCH], page 69
, [PAUSE], page 70 , [CONTINUE], page 70 .

10.1 Error Codes

Here are the numeric codes that appear as the first member of the list output by ERROR
when an error is caught, with the corresponding messages. Some messages may have two
different codes depending on whether or not the error is recoverable (that is, a substitute
value can be provided through the ERRACT mechanism) in the specific context. Some
messages are warnings rather than errors; these will not be caught. Errors 0 and 32 are so
bad that Logo exits immediately.

88

BERKELEY LOGO 5.5

0 Fatal internal error (can’t be caught)

1 Out of memory

2 Stack overflow

3 Turtle out of bounds

4 PROC doesn’t like DATUM as input (not recoverable)
5 PROC didn’t output to PROC

6 Not enough inputs to PROC

7 PROC doesn’t like DATUM as input (recoverable)

8 Too much inside ()’s

9 You don’t say what to do with DATUM

10 ’)’ not found

11 VAR has no value

12 Unexpected ’)’

13 I don’t know how to PROC (recoverable)

14 Can’t find catch tag for THROWTAG

15 PROC is already defined

16 Stopped

17 Already dribbling

18 File system error

19 Assuming you mean IFELSE, not IF (warning only)
20 VAR shadowed by local in procedure call (warning only)
21 Throw "Error

22 PROC is a primitive

23 Can’t use TO inside a procedure

24 T don’t know how to PROC (not recoverable)

25 IFTRUE/IFFALSE without TEST

26 Unexpected ']’

27 Unexpected '}’

28 Couldn’t initialize graphics

29 Macro returned VALUE instead of a list

30 You don’t say what to do with VALUE

31 Can only use STOP or OUTPUT inside a procedure
32 APPLY doesn’t like BADTHING as input

33 END inside multi-line instruction

34 Really out of memory (can’t be caught)

Chapter 11: Special Variables 89

11 Special Variables

Logo takes special action if any of the following variable names exists. They follow the
normal scoping rules, so a procedure can locally set one of them to limit the scope of its
effect. Initially, no variables exist except for ALLOWGETSET, CASEIGNOREDP, and
UNBURYONEDIT, which are TRUE and buried.

allowgetset

ALLOWGETSET (variable)

if TRUE, indicates that an attempt to use a procedure that doesn’t exist should be
taken as an implicit getter or setter procedure (setter if the first three letters of the name
are SET) for a variable of the same name (without the SET if appropriate).

caseignoredp

CASEIGNOREDP (variable)

if TRUE, indicates that lower case and upper case letters should be considered equal
by EQUALP, BEFOREP, MEMBERP, etc. Logo initially makes this variable TRUE, and
buries it.

See [EQUALP], page 15 , [BEFOREP], page 15 , [MEMBERP], page 16 .
erract

ERRACT (variable)

an instructionlist that will be run in the event of an error. Typically has the value
[PAUSE] to allow interactive debugging.

See [PAUSE], page 70 .
fullprintp

FULLPRINTP

if TRUE, then words that were created using backslash or vertical bar (to include charac-
ters that would otherwise not be treated as part of a word) are printed with the backslashes
or vertical bars shown, so that the printed result could be re-read by Logo to produce the
same value. If FULLPRINTP is TRUE then the empty word (however it was created)
prints as | |. (Otherwise it prints as nothing at all.)

loadnoisily

LOADNOISILY (variable)

if TRUE, prints the names of procedures defined when loading from a file (including the
temporary file made by EDIT).

See [EDIT], page 61 .

90 BERKELEY LOGO 5.5

printdepthlimit

PRINTDEPTHLIMIT (variable)

if a nonnegative integer, indicates the maximum depth of sublist structure that will be
printed by PRINT, etc.

See [PRINT], page 19 .
printwidthlimit

PRINTWIDTHLIMIT (variable)

if a nonnegative integer, indicates the maximum number of members in any one list that
will be printed by PRINT, etc.

See [PRINT], page 19 .
redefp

REDEFP (variable)
if TRUE, allows primitives to be erased (ERASE) or redefined (COPYDEF).
See [ERASE], page 58 , [COPYDEF], page 51 .

startup

STARTUP (variable)

if assigned a list value in a file loaded by LOAD, that value is run as an instructionlist
after the loading.

See [LOAD], page 63 .
unburyonedit

UNBURYONEDIT (variable)

if TRUE, causes any procedure defined during EDIT or LOAD to be unburied, so that
it will be saved by a later SAVE. Files that want to define and bury procedures must do it
in that order.

See [EDIT], page 61 , See [LOAD], page 63 , See [SAVE], page 63 .
usealternatenames

USEALTERNATENAMES (variable)

if TRUE, causes Logo to generate non-English words (from the Messages file) instead of
TRUE, FALSE, END, etc.

Chapter 12: Internationalization 91

12 Internationalization

Berkeley Logo has limited support for non-English-speaking users. Alas, there is no
Unicode support, and high-bit-on ASCII codes work in some contexts but not others.

If you want to translate Berkeley Logo for use with another language, there are three
main things you have to do:

1. Primitive names
2. Error (and other) messages
3. Documentation

For primitive names, the easiest thing is to provide a startup file that defines aliases for
the English primitive names, using COPYDEF:

COPYDEF "AVANT "FORWARD

This should take care of it, unless your language’s name for one primitive is spelled like
the English name of a different primitive. In that case you have to turn REDEFP on and
be sure to copy the non-conflicting name before overwriting the conflicting one!

"Primitives" that are actually in the Logo library, of course, can just be replaced or
augmented with native-language-named Logo procedures and filenames.

Of course Logo programs will still not look like your native language if the word order
is dramatically different, especially if you don’t put verbs before their objects.

For error messages, there is a file named Messages in the logolib directory with texts of
messages, one per line. You can replace this with a file for your own language. Do not add,
delete, or reorder lines; Logo finds messages by line number. The sequences %p, %s, and
%t in these messages represent variable parts of the message and should not be translated.
(%p PRINTs the variable part, while %s SHOWs it — that is, the difference is about whether
or not brackets are shown surrounding a list. %t means that the variable part is a C text
string rather than a Logo object.) If you want to change the order of two variable parts (no
reorderable message has more than two), you would for example replace the line

%p doesn’t like %s as input
with
%+s is a lousy input to %p

The plus sign tells the message printer to reverse the order; you must reverse the order
of %p and %s, if both are used, to match. The plus sign goes just after the first percent
sign in the message, which might not be at the beginning of the line. The sequence \n in
a message represents a newline; don’t be fooled into thinking that the "n" is part of the
following word.

Some messages appear twice in the file; this isn’t a mistake. The two spaces before
"to" in "I don’t know how to" aren’t a mistake either. The message containing just "%p"
is for user-provided error messages in THROW "ERROR. The message " in %s\n%s" is
the part of all error messages that indicates where the error occurred if it was inside a
procedure; you might want to change the word "in" to your language. "%s defined\n" is
what LOAD prints for each procedure defined if the variable LOADNOISILY is TRUE. "to
%p\nend\n\n" is what EDIT puts in the temporary file if you ask to edit a procedure that
isn’t already defined.

92 BERKELEY LOGO 5.5

Also in the Messages file are lines containing only one word each; the first of these
is the word "true". Some of these words are recognized by Logo in user input; some
are generated by Logo; some are both. For example, the words TRUE and FALSE are
recognized as Boolean values by IF and IFELSE, and are also generated by Logo as outputs
from the primitive predicates such as EQUALP. The word END is recognized as the end of
a procedure definition, and may be generated when Logo reconstructs a procedure body for
PO or EDIT. I've used capital letters in this paragraph for easier reading, but the words in
the Messages file should be in lower case.

If you replace these with non-English words, Logo will *recognize* both the English
names and your alternate names. For example, if you replace the word "true" with "vrai"
then Logo will understand both of these

IF "TRUE [PRINT "YES]
IF "VRAI [PRINT "YES]

The variable UseAlternateNames determines whether Logo will *generate* other-
language names — for example, whether predicate functions return the other-language
alternates for TRUE and FALSE. This variable is FALSE by default, meaning that the
English words will be generated.

You might wish to have English-named predicate functions generate English TRUE and
FALSE, while other-language-named predicates generate the alternate words. This can
be done by leaving UseAlternateNames false, and instead of defining the other-language
predicates with COPYDEF, do it this way:

to french.boolean :bool

if equalp :bool "true [output "vrail
if equalp :bool "false [output "faux]
output :bool ; shouldn’t happen

end

to make.french.predicate :french :english :arity
define :french ‘[[[inputs] ,[:arity]]
[output french.boolean
apply , [word "" :english] :inputs]]
end

? make.french.predicate "egal? "equal? 2

? pr egal? 3 4

faux

? pr egal? 4 4

vrai

? pr equal? 3 4

false

? pr equal? 4 4

true

The third input to make.french.predicate is the number of inputs that the predicate ex-

pects. This solution isn’t quite perfect because the infix predicates (=, <, >) will still output

in English. If you want them to generate alternate-language words, set UseAlternateNames
to TRUE instead.

Chapter 12: Internationalization 93

Some of the words in this section of the Messages file are names of Logo primitives (OUT-
PUT, STOP, GOTO, TAG, IF, IFELSE, TO, .MACRO). To translate these names, you
must use COPYDEF as described earlier, in addition to changing the names in Messages.
You should be consistent in these two steps. Don’t forget the period in ".macro"!

For documentation, there are two kinds: this manual and the help files. The latter are
generated automatically from this manual if you have a Unix system, so in that case you
need only translate this manual, maintaining the format. (The automatic helpfile generator
notices things like capital letters, tabs, hyphens, and equal signs at the beginnings of lines.)
The program makefile.c may require modification because a few of the primitive names are
special cases (e.g., LOG10 is the only name with digits included).

If you don’t have Unix tools, you can just translate each helpfile individually. A period in
a primitive name is represented as a D in the filename; there are no files for question marks
because the HELP command looks for the file named after the corresponding primitive that
ends in P.

94

BERKELEY LOGO 5.5

INDEX

INDEX

*
K 29
+
o 29
e 29
defmacro ... 83
1< [16
TNACTO « « ot et et et e et e e e e et e 83
.maybeoutput ... oo 71
setbf oo 13
setfirst ... 13
setitem 14
.setsegmentsize L 65
P 29
<
e e 32
D 32
D e 15
P 15
>
> 32
D 32
¢
e 72
A
allopen...... ... 23
allowgetset 89
AllowGetSet. ... 4
AN . e 35
APPLY - 76
2 39

95
arity 56
F20 8 - 10
ATTAY T oottt 15
ATTAYD « v e vveete ettt et 15
arraytolist....... 10
ASCIL + o vt 17
ashift 34
B
back 37
background o L. 47
backslashed? 16
backslashedp L 16
before?. 15
beforep ... 15
o3 P 11
bfS. . 12
D 47
bitand 34
bitnot.......... 34
bitor....... ... 34
bitXor. ... 34
bK . 37
bl o 12
buried 54
buried? 60
buriedp 60
bury 59
buryall....... 59
buryname............ 60
butfirst 11
butfirsts. 12
butlast.......... 12
button........... 48
button? 48
buttonp............. i 48
DYE oo 71
C
cascade 80
cascade.2. 81
CASE v ot et e et e 74
case-insensitive, 5
caseignoredp 89
catch 69
char 17
clean 40
clearscreen 40
cleartext 26
close . .. 23
closeall. 24
7o J 70
combine............ 10

96

COMMENES . . v\ vttt ettt et 5
Computer_Science_Logo_Style 1
CONA . vt 74
contents. 54
CONtINUEottt 70
copydef 51
Copyright 1
{7 T 31
(7010 55X 17
CTOSSINAD « « « e vv e et e et e e e e et 79
S et e e e e 40
cslsload 64
Cb o 26
CUTSOT .+t et et et e e ettt et ettt 27
D

define........ 50
defined?....... 54
definedp ... 54
delimiters i 5
dequeue. 14
difference 29
dountil 73
do.while....... 73
dribble. 24
E

ed .. 61
edall. 62
edit. ..o 61
editfile.......... 62
editor. 61
edn 63
ednsS ... 62
edpl ..o 63
edpls ..o 63
EAPS « e 62
empty? ... 15
EMPEYD - o 15
eof T 26
€OID ot 26
EPSPICE . .o 47
equal? 15
equalp ... 15
< 58
erall 58
BTASE . .« ettt et e e e e e 58
erasefile......... 24
erf . 24
1 59
ETTIS &+ ot et e e e e 59
erpl. o 59
EIPIS. oo 59
(S5 4 0 58
EITACt . v oo 89
{3 0) 70

BERKELEY LOGO 5.5

1<) e) =T 87
1554 o TP 30
F

fd o 37
fence....... ... 41
file? o 26
flep .o 26
ALl . 41
filter . ..o 78
find......... . 78
frst. ... 11
Arsts. .o 11
for. o 73
foreach......... 77
forever 67
form 33
forward 37
fput ..o 9
P 42
fullprintp o 89
fullscreen.oo i 42
fullbext ... 51
G

B et 65
oS3 11537 00 E 11
getter. 2
global..... 52
BOLO « vt 71
BPTOD « vttt e e e 53
greater? 32
greaterequal?........ L. 32
greaterequalp. o i 32
greaterp. 32
H

heading 39
help ..o 64
hideturtle 40
home 39
ht oo 40
I

L 68
ifelse. ... 68
HE 68
iffalse. ... 68
1 68
ftrue 68
IBNOTE. oottt 72
Inb. .. 30
invoke 76

INDEX

label. 41
last ..o 11
leaving ucblogo. 4
left . oo 38
LSS e 32
lessequal?o 32
lessequalpooov i 32
L6SSD - vt 32
line-continuation............... 5
LSt e 9
LSt e 15
BStD o v 15
listtoarray 10
In . 31
load . ..o 63
loadnoisily ol 89
loadpict. ... 47
local. ... 52
localmake 52
1oglO .o 30
logohelp. 64
lowercase.oouniiiin i 18
Iput ..o 9
Ishift. 34
P 38

INACTOT . o vt ettt et e et et et e 85
macroexpand 85
80T T2 (o) o SV 85
MAaKe ..ot 51
00 E21 o J 77
TNAPSE .« ettt e e e 77
MAAITAY .« . v et 10
mditem 12
mdsetitem............ 13
MEMbETrt 17
MEMDbDET? . .ot 16
10015001 01C) o o JA PP 16
MINUS . ¢ et ettt et e e e e e e e 29
modulo 30
TNOUSEPOS vttt et e e e e e e 47

97
N
0 E= 00 LS 51
NAMET .« oottt et e e 54
namelist 55
F0E20'00 1<) o P 54
F0EE 00 TS 55
NOAES . o e vttt et e e 56
nodribble L 24
norefresh........ 43
NOb ..o 35
notequal? 15
notequalp 15
nuUmMbEr? 16
NUMDEIP ..o 16
O
O e e et e 69
opPeNapPPendot 23
openread 22
openupdate 23
OPENWIIte . . oot 22
0 35
output....... ... 69
P
palette...... ... 46
PATSE .ottt et e e e 18
PAUSE « . e et ettt et e e 70
PC et 46
PA . 43
0 1< TP 44
PN .ot 46
pencolor 46
PENAOWIL . .ottt 43
pendown? 46
PENAOWND .« . vttt ettt e 46
PENETASE .+ v vv et e e e e et e e e 44
penmode. 46
penpaint 44
penpattern 46
PENTEVETSE . . oot ottt et e et e e e e eaeas 44
PENSIZE. . .ottt 46
PENUD . oottt ettt e 44
Pick ..o 12
Plist . oo 53
PLSE? oo 54
PlhStD .o 54
PlStS « v 55
plist. ... 56
PO et 56
poall. ... 56
POM. ottt et e e 57
PONS . ottt e 57
PO e v et et e 14
POPL .o 57

98

PODS - ettt e 57
POS « et 39
POt .o 58
POLS oot 58
POWET . .ottt ettt 30
PPIOD o oe et e e e 53
PP e 44
53 19
Prefix ..o 22
primitive? 54
primitivep......... .. 54
primitives......... ... 55
Print. 19
printdepthlimit 90
printout........ 56
printwidthlimit 90
procedure? 53
Procedurepovi e 53
Proceduresouviii 55
product 29
PU ettt 44
push...... 14
PX et 44
Q

QUEUE .« e ettt et e e e e e e e e e 14
quoted . ..o 13
quotient.......... 29

radarctan 31
TACOS . . vt ot 31
radSin. ... 31
Tandomottt 33
TAWASCIL .+ vt et e 17
T v et e et e e 21
e 21
readchar 21
readchars 21
Teader ..ot 25
readlist 20
TeAAPOS .« vttt 25
readrawline., 21
readword. 20
redefp ... 90
TeAUCE . oottt 79
refresh.......... 42
remainder i 30
TEMAUD ot vttt et e 13
D 1c) 00 0 17 < T 12
J0S30000) o) o N 53
TEPCOUNYD . .. ov ittt 68
TEPEAL « vttt 67
rerandOoIllvtvt e 33
TEVEISE .« v vt e e e et et e ettt e 10

BERKELEY LOGO 5.5

0 20
TOUNA . o vttt e e e 30
TSEQ « e ve vt e e e e e 32
o O 38
1 0 PP 67
TUNDPATSE . .o voee et ee et et et et e e e ae e 18
TUNPAISING « . v v et et et et 5
runresult 67
TW o e et e e e e e e e e e e 20

SAVE & vttt e e e e e 63
SAVEl . .. 63
SAVEPICt . ..o 47
SCreenMOde. . ..o v vttt 43
scrunch 40
scrunch.dat........... 42
B e et e e e e e 9
SENLENCE . . o\ vttt e e 9
setbackground oo il 45
Setbg ..o 45
seteslsloc. ..o 65
SELCUISOT . o v et ettt 26
seteditor 64
seth ... 38
setheading 38
sethelploc......... 65
setitem 13
setlibloc........ ... 64
setmargins oo 27
setpalette 44
SEUPC « et 44
SetpPen ..o 45
setpencolor. 44
setpenpattern L 45
setpensize i 45
SEEPOS « vt 38
setprefix 22
setread...... ..o 24
SEtTeadpPoSs « .o v v 25
setscrunch............. i 42
SettC . .o 27
settemploc 65
setter 2
settextcolor i 27
setwrite.. 24
setwritepos....... 25
SeUX L 38
SEU XY o 38
SELY . e 38
shell ... 21
Show 20
shown? 43
shownp 43
showturtle 40
SIM. et 31
splitscreen.oo i 42

INDEX

SATb . o 30
S e e e e e e e e e 42
PP 40
standout 18
starting ucblogo................ 4
startup 90
SteD o 61
stepped ... 55
stepped? 61
steppedp . ..o 61
SEOD « e 69
substring?. 16
substringp. 16
5100 00 P 29
T

L7 <P 72
TEMD ..o 61
template....... 75
test. oo 68
text .o 50
textscreen 41
thing 52
throw. 69
O e 49
towards 39
Brace. ..o 60
traced 55
traced? 61
Tracedp « oo 61
transfer 81
DS e e e 41

99
turtlemode 43
Bype ..o 19
U
UNDUTY . oot 60
unburyall 60
unburyname........... 60
unburyonedit 90
unstep ... 61
until 74
UNETACE . .ottt 61
UPPETCASE « o v evoeveee e e e e e et 18
usealternatenames 90
\%%
WALL « v 71
while ... 73
WINAOW . ..ot 41
WOIA .« vt 9
WOIAD - o v ettt 14
WEAD « - e v ettt et e e e 40
WIIEEPOS « o v et 26
WIIbeT . oo 25
X
D (1) 39
Y

100 BERKELEY LOGO 5.5

Short Contents

© 00 J O Ot = W N

Introduction. o v o v v v v v v v v v e e s v evessesessoenssnas 1
Data Structure Primitives « o o v o v v v v v v v v oo veveooosss 9
CommuniCation e o o e o o s s oo oo s ovsssoesssocssssses 19
ArithmetiC o v v v v v vt v v v s e s e s e oeeeeeesssasssss 29
Logical Operations « oo oo eeeeeeeeeeeeoeosoosossss 35
GraphiCS v v v v v v v vt v vt v eevovsseessssssoeeosons 37
Workspace Management . . o o v v v v v e e e e e eneennn. 49
Control Structures . v v v v v v v v v oo oo oo oo oeeeoessns 67
MACTOS ¢ o v v e oo v v evosoesssoesssososssosossssees 83
Error Processing « o o v v v oo oo eeeeeeeeeennoonnnns 87
Special VariableS e v v v v v v v vttt vvvvvvonneessossnns 89
Internationalization « « o o v v v v v vt v s s e veesoeneseeas 91

1

BERKELEY LOGO 5.5

Table of Contents

1 Introduction..............c0iiiiiiiinen... 1
1.1 OVEIVIEW . oo e e e e e e 1
1.2 Getter/Setter Variable Syntax............................ 1
1.3 Entering and Leaving Logo............... 4
1.4 ToKenization 5

2 Data Structure Primitives.................. 9
2.1 ConstruCtors. 9

WO oot 9
3 9
SENLEIICE . . oottt 9
fput . .o 9
IPUL . e 9
2 9
MAATTAY .+« . oottt e e 10
listtoarraycoo 10
arraytolist 10
COMDINEt 10
TEVETSE . o oottt e e et e e e et e ettt e 10
GENSYIIL .« ettt et et e e e e e e e e e e 10
2.2 Data Selectors ... 11
OISt oo 11
OISt o 11
LaSt o oo 11
butfirst.o 11
bUutfirsts . ..o 11
butlast 12
F 11 0 0 12
mditem 12
PICK . o 12
<) 0070)4 S 12
TEMAUD - .ttt e 12
QUOtE . . ot 13
2.3 Data Mutators.............c. i, 13
SetiteIm 13
mdsetitem 13
SEtiIrSt . .o 13
setbf. .. 13
Setitem ..o 13
PUSh .. 14
503 J P 14
QUEULE « e ettt e et e e e e e e e e e e e 14

iii

BERKELEY LOGO 5.5

2.4 Predicatescooiiii 14
WOIAD .« v et 14

115}y o 14

F23 10 % 0 15

1S 001173 o TP 15
EQUALD . oo 15
notequalp ... 15
beforep.o 15

T 16
MEIMDEID . .ttt et e 16
SUbSETINGD . . .o 16
NUINDEID ..\ttt e 16
backslashedp........... o 16

2.0 QUETIES . ..ottt 17
COUND . .ottt e e 17

ASCIL. + v ettt 17
TAWASCIL « v vttt et et e e 17

char. ... 17
MEMDbDET . .o 17
JOWEICASE . . vttt e 17
UPPETCASE . v vt tete e e et ettt e et 18
standout 18
PATSE . o ettt 18
TUINPATSE . ¢ o v ettt et e e et e e e et et e e et e et e 18

3 Communication................ceevuunnn.. 19
3.1 Transmitters......... ..., 19
Print . .o 19

17170 < 19

ShOW . .o 20

3.2 Receiversoii 20
readlist. 20
readword 20
readrawline. 21
readchar. 21
readchars. 21

shell ... 21

3.3 File ACCess ..o 22
SEtPTEfiX . .o 22
Prefix ..o 22
OPENTEAd . . oottt e e 22
OPENWTILE . .ottt 22
OPENAPPENd . . .ttt 23
openupdate. 23

ClOSE . oo 23
allopen 23
closeall 23

erasefile 24

nodribble. 24
setread . ..o 24
SEEWTIte . ..o 24
TEAAET . . o\ttt 25
WII O . o 25
SetreadpPos . ..o 25
SEtWIILEPOS .« . ot 25
TEAAPOS .« .o e et e 25
WIIEEDOS . . v ot 25
O D L e 26
BleD . o 26
3.4 Terminal ACCESS. 26
KOV D -t 26
cleartext 26
SEECULSOT . vttt e e e 26
CUTSOT & v v ettt et e e e et e e e et e 27
SEtMArgINS . . . oot 27
settextcolor. ..o 27
4 Arithmetic..........c.iiiii .. 29
4.1 Numeric Operations, 29
510 10 0 29
difference....... ... 29
TNIIIUS « @ v vt e et e e e e e e e e e e e e 29
Product 29
quotient 29
remainder 29
modulo. 30
I e 30
TOUNd . . oot 30
STt e et 30
POWET & . vttt et e e e e e 30
XD e et 30
Logl0 . oo 30
I 30
5310 31
TadSIn . .o 31
(670 = 31
TACOS . o oottt 31
AL AT . . oot 31
radarctan. 31
LT P 31
TSEQ « v v v et et et et e e e e e e e e e 32
4.2 Numeric Predicates. 32
LESSD o oo 32
BLEALETD - o v vt e et e e e e 32

lessequalpo 32

vi BERKELEY LOGO 5.5
greaterequalp 32
4.3 Random Numbers............ 32
TandOmL . .ottt 33
TErandOml . . . vttt e e e e 33
4.4 Print Formatting.......... 33
LTI . o 33
4.5 Bitwise Operationsoiiiinieein... 33
bitand....... .. 33
DItOr . o 34
DItXOr . . 34
bitnot 34
ashift ... o 34
IShift . ..o 34
5 Logical Operations........................ 35
And .. 35
o) 35
870 35
6 Graphics............. ..., 37
6.1 Turtle Motion.ot 37
forward 37
back 37
left. o 37
TIght .o 38
SEUPOS .« ot 38
1] 1<y 38
FST<] -« 38
S+ e 38
setheading....... 38
home. 38
AL e o et e e e e e e e 39
6.2 Turtle Motion Queries...............ccoiiiiiiniennn... 39
POS « ettt 39
D70 39
41) 39
heading 39
towards 39
scrunch. 39
6.3 Turtle and Window Control............................. 40
showturtle. 40
hideturtle 40
cleam 40
ClearSCreenL. . ..o 40
TWTAD « o e v e e et et e e e e e e e e e 40
WINAOW . . oo 41
feNCE . . o 41

vil

label 41
TEXESCIEEN . .. oot 41
fullscreen i 41
splitscreen 42
setscrunch 42
refresh 42
norefresh 42
6.4 Turtle and Window Queries............................. 43
ShOWND . .o 43
SCTEENINOAE . . o . vttt et ettt e 43
turtlemode 43
6.5 Pen and Background Control............................ 43
PENAOWIL o oottt e e e 43
PEIUD « ¢ ettt et e et e e e e e 43
pPenpaint 44
PEIETASE . . . ot ettt et et et e e e 44
PENTEVETSE .« . v vee et e et e e ettt e e 44
SEtPENCcOlor 44
setpalette. ... 44
SEUPENSIZE . o\ vt 45
setpenpattern........... 45
SEEPDEIL. . .ot 45
setbackground 45
6.6 Pen Queries.......... ... i 45
PENAOWND ..\ttt e 45
PENMOAE ..o\t 46
PENCOIOT . ..t 46
palette 46
PENSIZE . . ottt 46
POIL ettt 46
background 46
6.7 saving and loading pictures 47
SAVEPICE . v v 47
loadpict . ..o 47
EPSPICE . v ot 47
6.8 Mouse QUETIESottt 47
THOUSEDOS « « « e et ettt e e et e e e e e e e 47
buttonpo 48

buttonp ... 48

viii BERKELEY LOGO 5.5

7 Workspace Management 49
7.1 Procedure Definition 49
170 T 49
define ... 50

Xt L e 50
fulltext 51
copydef. ... 51

7.2 Variable Definition 51
MAKE . . ottt 51

F0E2 000 L 51

local ... o 51
localmake 52

thing 52
global 52

7.3 Property Lists 52
PPIOD oo eve et e e e e 53
BPTOD - v ettt e e e e 53

<3005 0310 o JPU R 53

PhSt. .o 53

7.4 Workspace Predicates 53
ProCedUTED . . v ittt et e e e 53
Primitivep . ..o 53
definedp ... 54
§0F2 50) o 5P 54

PLHSED .o 54

7.5 Workspace Queriescoiiiiiiii i, 54
CONtENtS . ..o 54
buried.. 54
tracedo 54
stepped ... 55
PrOCEAUTES . « o\ttt e et et ettt e 55
Primitives 55
TMAIIIES .« « o vttt e et et e e e e e e e e 55

PhSES . .o 55
nameliSt 55

PIESE . o 55

ATIEY .« ot 56

NOAES . .ttt 56

7.6 Workspace Inspection 56
PO et 56

poall ... 56

PODS - e vttt e e e e 57

POIIS © ottt et 57

POPIS . o Y

POIL ettt e e 57

PODL 57

PO e 57

7.7 Workspace Control 58
<) 1 58
erall. ... 58
<3 0 58
<) 1T 58
EIPIS o o 59
<) 59
erpl . o 59
DULY .« 59
buryall 59
buryname 59
UNDULY .« .o 60
unburyall 60
UNDUTYNAINE « ..ttt et e et 60
buriedp 60
113 7= o 60
UNETACE .« v v ot ettt e e e 60
tracedp . . oo 61
1 11C) 0 61
L0871 1) o 61
steppedp ..o 61
It . 61
editfile 62
edall 62
BAPS .« e 62
edNS .. 62
edplS . e 62
edm .. 63
edpl. .o 63
T 1< Tt 63
SAVEL . .o 63
load 63
cslsloado 64
help. ..o 64
seteditor.o 64
setlibloc. 64
SetesISloC . ..o 64
sethelploco 65
settemploC. 65
B e e e e e e e 65

X

b BERKELEY LOGO 5.5

8 Control Structures........................ 67
81 Comtrol. 67
TUIL & oot e et e e e e e e et e e e e 67
runresult 67
TEPEAL . ot t 67
fOTEVEr .« .o 67
TEPCOUND . oottt et e e e e 67
5 68
Helse . .o 68
eSSt 68
HOTUe . 68
lalse . ..o 68
70 o XS 69
output . ..o 69
catCh. ... 69
Throw ..o 69
1118 0) (P 70
PAUSE .« o oottt e e e e 70
CONMBIMUE . . o\ttt e e e e e et 70
WALl . o 71
DY o 71
maybeoutput. ... 71
BObO . et 71
1172 < 72
120 00 I 72
R 72
0 72
do.while. 73
while. 73
dountil 73
until ... 74
S v v e et e e e 74
CONA . oo 74
8.2 Template-based Iteration 74
ADPDLY e 76
INVOKE . .« ot 76
foreach 76
00 T 2 77
TADSE &+ o v et et et et e e e 77
Alter ..o 78
And ... 78
TEAUCE. . . vttt 78
CTOSSITIAD -+« v v vt e et et et e e e e e e e ettt 79
CaSCAdEt 79
cascade.2 81

transfer 81

TIACTO &« e ottt e et e e et e e et e e e e e e 83

defmacro. ... 85

TNACTOD -+ v e v e te et e e e e e e e e 85

macroexpand 85

10 Error Processing......................... 87
10.1 Error Codes ..o 87

11 Special Variables 89
allowgetset o 89

CaSEIgNOTEdD .« . vt 89

EITACE . vt 89

fullprintp oo 89

loadnoisily 89
printdepthlimit L. 89
printwidthlimit 90

redefD . .o 90

Startup 90

unburyonedit 90
usealternatenames. 90

12 Internationalization...................... 91

xii BERKELEY LOGO 5.5

